32 research outputs found
Measuring neural excitation and inhibition in autism: different approaches, different findings and different interpretations.
The balance of neural excitation and inhibition (E/I balance) is often hypothesised to be altered in autism spectrum disorder (ASD). One widely held view is that excitation levels are elevated relative to inhibition in ASD. Understanding whether, and how, E/I balance may be altered in ASD is important given the recent interest in trialling pharmacological interventions for ASD which target inhibitory neurotransmitter function. Here we provide a critical review of evidence for E/I balance in ASD. We conclude that data from a number of domains provides support for alteration in excitation and inhibitory neurotransmission in ASD, but when considered collectively, the available literature provide little evidence to support claims for either a net increase in excitation or a net increase in inhibition. Strengths and limitations of available techniques are considered, and directions for future research discussed
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Factor structure of the Beck Anxiety Inventory in mild traumatic brain injury
Introduction: The factor structure of the BAI remains unknown for people with mild traumatic brain injury (mTBI), despite common anxiety symptoms in this group. Method: A sample of 141 individuals diagnosed with an mTBI were evaluated. Confirmatory factor analysis was used to test whether items loaded on a single anxiety factor, a two-factor structure, or a four-factor structure. Results: The best fit was the model with four factors consisting of cognitive, autonomic, neuromotor, and panic symptoms, CFI = .92; RMSEA=0.067, 90% CI (0.053, 0.081). Conclusion: Anxiety symptoms following mTBI can be evaluated based on cognitive, autonomic, neuromotor, and panic components
Data from: Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae)
1. Models that predict organismal and population responses to climate change may be improved by considering ecological factors that affect species thermal tolerance. Species differences in microhabitat use can expose animals to diverse thermal selective environments at a given site and may cause sympatric species to evolve different thermal tolerances. 2. We tested the hypothesis that species differences in body size and microhabitat use (above- vs. below-ground activity) would correspond to differences in thermal tolerance (maximum critical temperatures: CTmax). Thermal buffering effects of soil can reduce exposure to extreme high temperatures for below-ground active species. We predicted larger-bodied individuals and species would have higher CTmax and that species mean CTmax would covary positively with degree of above-ground activity. We used Neotropical army ants (Formicidae: Ecitoninae) as models. Army ants vary in microhabitat use from largely subterranean to largely above-ground active species and are highly size polymorphic. 3. We collected data on above- and below-ground temperatures in habitats used by army ants to test for microhabitat temperature differences, and we conducted CTmax assays for army ant species with varying degrees of surface activity and with different body sizes within and between species. We then tested whether microhabitat use was associated with species differences in CTmax and whether microhabitat was a better predictor of CTmax than body size for species that overlapped in size. 4. Microhabitat use was a highly significant predictor of species' upper thermal tolerance limits, both for raw data and after accounting for the effects of phylogeny. Below-ground species were more thermally sensitive, with lower maximum critical temperatures (CTmax). The smallest workers within each species were the least heat tolerant, but the magnitude of CTmax change with body size was greater in below-ground species. Species-typical microhabitat was a stronger predictor of CTmax than body size for species that overlapped in size. Compared to the soil surface, 10-cm subsoil was a significantly moderated thermal environment for below-ground army ants, while maximum surface raid temperatures sometimes exceeded CTmax for the most thermally sensitive army ant castes. 5. We conclude sympatric species differences in thermal physiology correspond to microhabitat use. These patterns should be accounted for in models of species and community responses to thermal variation and climate change
Data from: Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae)
1. Models that predict organismal and population responses to climate change may be improved by considering ecological factors that affect species thermal tolerance. Species differences in microhabitat use can expose animals to diverse thermal selective environments at a given site and may cause sympatric species to evolve different thermal tolerances. 2. We tested the hypothesis that species differences in body size and microhabitat use (above- vs. below-ground activity) would correspond to differences in thermal tolerance (maximum critical temperatures: CTmax). Thermal buffering effects of soil can reduce exposure to extreme high temperatures for below-ground active species. We predicted larger-bodied individuals and species would have higher CTmax and that species mean CTmax would covary positively with degree of above-ground activity. We used Neotropical army ants (Formicidae: Ecitoninae) as models. Army ants vary in microhabitat use from largely subterranean to largely above-ground active species and are highly size polymorphic. 3. We collected data on above- and below-ground temperatures in habitats used by army ants to test for microhabitat temperature differences, and we conducted CTmax assays for army ant species with varying degrees of surface activity and with different body sizes within and between species. We then tested whether microhabitat use was associated with species differences in CTmax and whether microhabitat was a better predictor of CTmax than body size for species that overlapped in size. 4. Microhabitat use was a highly significant predictor of species' upper thermal tolerance limits, both for raw data and after accounting for the effects of phylogeny. Below-ground species were more thermally sensitive, with lower maximum critical temperatures (CTmax). The smallest workers within each species were the least heat tolerant, but the magnitude of CTmax change with body size was greater in below-ground species. Species-typical microhabitat was a stronger predictor of CTmax than body size for species that overlapped in size. Compared to the soil surface, 10-cm subsoil was a significantly moderated thermal environment for below-ground army ants, while maximum surface raid temperatures sometimes exceeded CTmax for the most thermally sensitive army ant castes. 5. We conclude sympatric species differences in thermal physiology correspond to microhabitat use. These patterns should be accounted for in models of species and community responses to thermal variation and climate change
CTmax data
All data in this file was collected in the field. Data were input manually. These data were used for all analyses having heat-tolerance as a response variable. Species codes were used: Ebparvi = Eciton burchellii parvispinum, ECITmexi = Eciton mexicanum, LABIcoec = Labidus coecus, LABIprae = Labidus praedator, LABIJTL001 = Labidus JTL001, LABIspin = Labidus spininodis, NEIVpilo = Neivamyrmex pilosus, NEIVmacr = Neivamyrmex macrodentatus, NEIVsumi = Neivamyrmex sumichrast
Max & Min surface temperatures
These data are maximum and minimum surface temperatures collected at 40 surface army ant raids in Monteverde, Costa Rica using infrared thermometers
Specimen head widths
These are a collection of head-width measurements used to calculate means for each visually-discerned size category. Specimens were stored together within each body size category. Specimens were photographed under a dissecting microscope, and measured using ImageJ