115 research outputs found
Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors
18 pags., 6 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0Coordinated conformational transitions in oligomeric enzymatic complexes modulate function in response to substrates and play a crucial role in enzyme inhibition and activation. Caseinolytic protease (ClpP) is a tetradecameric complex, which has emerged as a drug target against multiple pathogenic bacteria. Activation of different ClpPs by inhibitors has been independently reported from drug development efforts, but no rationale for inhibitor-induced activation has been hitherto proposed. Using an integrated approach that includes x-ray crystallography, solid- and solution-state nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the proteasome inhibitor bortezomib binds to the ClpP active-site serine, mimicking a peptide substrate, and induces a concerted allosteric activation of the complex. The bortezomib-activated conformation also exhibits a higher affinity for its cognate unfoldase ClpX. We propose a universal allosteric mechanism, where substrate binding to a single subunit locks ClpP into an active conformation optimized for chaperone association and protein processive degradation.This work used the platforms of the Grenoble Instruct center (ISBG; UMS 3518
CNRS-CEA-UJF-EMBL) with support from INSTRUCT (“Innovative EM/NMR approach for the
characterization of the drug target ClpP APPID: 301“), FRISBI (ANR-10-INSB-05-02), and
GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). We thank the ESRF for beamtime at ID30A and ID23-1. Funding: This work was supported by Spanish Ministerio de Economia y Competitividad (BFU2016-78232-P) and
Instituto de Salud Carlos III co-funded by European Union (PI15/00663 and PI18/00349, ERDF/
ESF, “Investing in your future”). This work was financially supported by the European Research
Council (ERC-Stg-2012-311318 to P.S.). J.F. is supported by an EMBO long-term post-doctoral
fellowship (ALTF441-2017)
Sensitivity enhancement in low cutoff wavelength long-period fiber gratings by cladding diameter reduction
The diameter of long-period fiber gratings (LPFGs) fabricated in optical fibers with a low cutoff wavelength was be reduced by hydrofluoric acid etching, enhancing the sensitivity to refractive index by more than a factor of 3, to 2611 nm/refractive index unit in the range from 1.333 to 1.4278. The grating period selected for the LPFGs allowed access to the dispersion turning point at wavelengths close to the visible range of the optical spectrum, where optical equipment is less expensive. As an example of an application, a pH sensor based on the deposition of a polymeric coating was analyzed in two situations: with an LPFG without diameter reduction and with an LPFG with diameter reduction. Again, a sensitivity increase of a factor of near 3 was obtained, demonstrating the ability of this method to enhance the sensitivity of thin-film-coated LPFG chemical sensors
Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors
Coordinated conformational transitions in oligomeric enzymatic complexes modulate function in response to substrates and play a crucial role in enzyme inhibition and activation. Caseinolytic protease (ClpP) is a tetradecameric complex, which has emerged as a drug target against multiple pathogenic bacteria. Activation of different ClpPs by inhibitors has been independently reported from drug development efforts, but no rationale for inhibitor-induced activation has been hitherto proposed. Using an integrated approach that includes x-ray crystallography, solid- and solution-state nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the proteasome inhibitor bortezomib binds to the ClpP active-site serine, mimicking a peptide substrate, and induces a concerted allosteric activation of the complex. The bortezomib-activated conformation also exhibits a higher affinity for its cognate unfoldase ClpX. We propose a universal allosteric mechanism, where substrate binding to a single subunit locks ClpP into an active conformation optimized for chaperone association and protein processive degradation
Seleno-functionalization of quercetin improves the non-covalent inhibition of mpro and its antiviral activity in cells against sars-cov-2
The development of new antiviral drugs against SARS-CoV-2 is a valuable long-term strategy to protect the global population from the COVID-19 pandemic complementary to the vaccination. Considering this, the viral main protease (Mpro ) is among the most promising molecular targets in light of its importance during the viral replication cycle. The natural flavonoid quercetin 1 has been recently reported to be a potent Mpro inhibitor in vitro, and we explored the effect produced by the introduction of organoselenium functionalities in this scaffold. In particular, we report here a new synthetic method to prepare previously inaccessible C-8 seleno-quercetin derivatives. By screening a small library of flavonols and flavone derivatives, we observed that some compounds inhibit the protease activity in vitro. For the first time, we demonstrate that quercetin (1) and 8-(p-tolylselenyl)quercetin (2d) block SARS-CoV-2 replication in infected cells at non-toxic concentrations, with an IC50 of 192 µM and 8 µM, respectively. Based on docking experiments driven by experimental evidence, we propose a non-covalent mechanism for Mpro inhibition in which a hydrogen bond between the selenium atom and Gln189 residue in the catalytic pocket could explain the higher Mpro activity of 2d and, as a result, its better antiviral profile. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
The acute effects of plyometric and sled towing stimuli with and without caffeine ingestion on vertical jump performance in professional soccer players
Abstract Background Post-activation potentiation (PAP) is the phenomenon by which muscular performance is enhanced in response to a conditioning stimulus. PAP has typically been evidenced via improved counter movement jump (CMJ) performance. This study examined the effects of PAP, with and without prior caffeine ingestion, on CMJ performance. Methods Twelve male professional soccer players (23 ± 5 years) performed two trials of plyometric exercises and sled towing 60 min after placebo or caffeine ingestion (5 mg.kg− 1) in a randomized, counterbalanced and double-blinded design. CMJ performance was assessed at baseline and 1, 3 and 5 min after the conditioning stimulus (T1, T3 and T5, respectively). Results Two way ANOVA main effects indicated a significant difference in jump height after the PAP protocol (F[3, 11] = 14.99, P 0.05) compared to placebo. Conclusions The results of this study suggest that acute plyometric and sled towing stimuli enhances jump performance and that this potentiation is augmented by caffeine ingestion in male soccer players
The decatenation checkpoint
The decatenation checkpoint delays entry into mitosis until the chromosomes have been disentangled. Deficiency in or bypass of the decatenation checkpoint can cause chromosome breakage and nondisjunction during mitosis, which results in aneuploidy and chromosome rearrangements in the daughter cells. A deficiency in the decatenation checkpoint has been reported in lung and bladder cancer cell lines and may contribute to the accumulation of chromosome aberrations that commonly occur during tumour progression. A checkpoint deficiency has also been documented in cultured stem and progenitor cells, and cancer stem cells are likely to be derived from stem and progenitor cells that lack an effective decatenation checkpoint. An inefficient decatenation checkpoint is likely to be a source of the chromosome aberrations that are common features of most tumours, but an inefficient decatenation checkpoint in cancer stem cells could also provide a potential target for chemotherapy
Characterization of the Interaction between the Cohesin Subunits Rad21 and SA1/2
The cohesin complex is responsible for the fidelity of chromosomal segregation during mitosis. It consists of four core
subunits, namely Rad21/Mcd1/Scc1, Smc1, Smc3, and one of the yeast Scc3 orthologs SA1 or SA2. Sister chromatid cohesion
is generated during DNA replication and maintained until the onset of anaphase. Among the many proposed models of the
cohesin complex, the メcoreメ cohesin subunits Smc1, Smc3, and Rad21 are almost universally displayed as tripartite ring.
However, other than its supportive role in the cohesin ring, little is known about the fourth core subunit SA1/SA2. To gain
deeper insight into the function of SA1/SA2 in the cohesin complex, we have mapped the interactive regions of SA2 and
Rad21 in vitro and ex vivo. Whereas SA2 interacts with Rad21 through a broad region (301ヨ750 aa), Rad21 binds to SA
proteins through two SA-binding motifs on Rad21, namely N-terminal (NT) and middle part (MP) SA-binding motif, located
At 60-81 aa of the N-terminus and 383ヨ392 aa of the MP of Rad21, respectively. The MP SA-binding motif is a 10 amino acid,
a-helical motif. Deletion of these 10 amino acids or mutation of three conserved amino acids (L385, F389, and T390) in this ahelical
motif significantly hinders Rad21 from physically interacting with SA1/2. Besides the MP SA-binding motif, the NT SAbinding
motif is also important for SA1/2 interaction. Although mutations on both SA-binding motifs disrupt Rad21-SA1/2
interaction, they had no apparent effect on the Smc1-Smc3-Rad21 interaction. However, the Rad21-Rad21 dimerization was
reduced by the mutations, indicating potential involvement of the two SA-binding motifs in the formation of the two-ring
handcuff for chromosomal cohesion. Furthermore, mutant Rad21 proteins failed to significantly rescue precocious
chromosome separation caused by depletion of endogenous Rad21 in mitotic cells, further indicating the physiological
significance of the two SA-binding motifs of Rad21
PLK1 facilitates chromosome biorientation by suppressing centromere disintegration driven by BLM-mediated unwinding and spindle pulling
Centromeres provide a pivotal function for faithful chromosome segregation. They serve as a foundation for the assembly of the kinetochore complex and spindle connection, which is essential for chromosome biorientation. Cells lacking Polo-like kinase 1 (PLK1) activity suffer severe chromosome alignment defects, which is believed primarily due to unstable kinetochore-microtubule attachment. Here, we reveal a previously undescribed mechanism named ‘centromere disintegration’ that drives chromosome misalignment in PLK1-inactivated cells. We find that PLK1 inhibition does not necessarily compromise metaphase establishment, but instead its maintenance. We demonstrate that this is caused by unlawful unwinding of DNA by BLM helicase at a specific centromere domain underneath kinetochores. Under bipolar spindle pulling, the distorted centromeres are promptly decompacted into DNA threadlike molecules, leading to centromere rupture and whole-chromosome arm splitting. Consequently, chromosome alignment collapses. Our study unveils an unexpected role of PLK1 as a chromosome guardian to maintain centromere integrity for chromosome biorientation
- …