26 research outputs found

    Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers

    Full text link
    A massive gap exists between current quantum computing (QC) prototypes, and the size and scale required for many proposed QC algorithms. Current QC implementations are prone to noise and variability which affect their reliability, and yet with less than 80 quantum bits (qubits) total, they are too resource-constrained to implement error correction. The term Noisy Intermediate-Scale Quantum (NISQ) refers to these current and near-term systems of 1000 qubits or less. Given NISQ's severe resource constraints, low reliability, and high variability in physical characteristics such as coherence time or error rates, it is of pressing importance to map computations onto them in ways that use resources efficiently and maximize the likelihood of successful runs. This paper proposes and evaluates backend compiler approaches to map and optimize high-level QC programs to execute with high reliability on NISQ systems with diverse hardware characteristics. Our techniques all start from an LLVM intermediate representation of the quantum program (such as would be generated from high-level QC languages like Scaffold) and generate QC executables runnable on the IBM Q public QC machine. We then use this framework to implement and evaluate several optimal and heuristic mapping methods. These methods vary in how they account for the availability of dynamic machine calibration data, the relative importance of various noise parameters, the different possible routing strategies, and the relative importance of compile-time scalability versus runtime success. Using real-system measurements, we show that fine grained spatial and temporal variations in hardware parameters can be exploited to obtain an average 2.92.9x (and up to 1818x) improvement in program success rate over the industry standard IBM Qiskit compiler.Comment: To appear in ASPLOS'1

    The Power of One Clean Qubit in Supervised Machine Learning

    Full text link
    This paper explores the potential benefits of quantum coherence and quantum discord in the non-universal quantum computing model called deterministic quantum computing with one qubit (DQC1) in supervised machine learning. We show that the DQC1 model can be leveraged to develop an efficient method for estimating complex kernel functions. We demonstrate a simple relationship between coherence consumption and the kernel function, a crucial element in machine learning. The paper presents an implementation of a binary classification problem on IBM hardware using the DQC1 model and analyzes the impact of quantum coherence and hardware noise. The advantage of our proposal lies in its utilization of quantum discord, which is more resilient to noise than entanglement.Comment: 9 pages, 11 figure

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure

    Resource Optimized Quantum Architectures for Surface Code Implementations of Magic-State Distillation

    Full text link
    Quantum computers capable of solving classically intractable problems are under construction, and intermediate-scale devices are approaching completion. Current efforts to design large-scale devices require allocating immense resources to error correction, with the majority dedicated to the production of high-fidelity ancillary states known as magic-states. Leading techniques focus on dedicating a large, contiguous region of the processor as a single "magic-state distillation factory" responsible for meeting the magic-state demands of applications. In this work we design and analyze a set of optimized factory architectural layouts that divide a single factory into spatially distributed factories located throughout the processor. We find that distributed factory architectures minimize the space-time volume overhead imposed by distillation. Additionally, we find that the number of distributed components in each optimal configuration is sensitive to application characteristics and underlying physical device error rates. More specifically, we find that the rate at which T-gates are demanded by an application has a significant impact on the optimal distillation architecture. We develop an optimization procedure that discovers the optimal number of factory distillation rounds and number of output magic states per factory, as well as an overall system architecture that interacts with the factories. This yields between a 10x and 20x resource reduction compared to commonly accepted single factory designs. Performance is analyzed across representative application classes such as quantum simulation and quantum chemistry.Comment: 16 pages, 14 figure

    Formal Constraint-based Compilation for Noisy Intermediate-Scale Quantum Systems

    Full text link
    Noisy, intermediate-scale quantum (NISQ) systems are expected to have a few hundred qubits, minimal or no error correction, limited connectivity and limits on the number of gates that can be performed within the short coherence window of the machine. The past decade's research on quantum programming languages and compilers is directed towards large systems with thousands of qubits. For near term quantum systems, it is crucial to design tool flows which make efficient use of the hardware resources without sacrificing the ease and portability of a high-level programming environment. In this paper, we present a compiler for the Scaffold quantum programming language in which aggressive optimization specifically targets NISQ machines with hundreds of qubits. Our compiler extracts gates from a Scaffold program, and formulates a constrained optimization problem which considers both program characteristics and machine constraints. Using the Z3 SMT solver, the compiler maps program qubits to hardware qubits, schedules gates, and inserts CNOT routing operations while optimizing the overall execution time. The output of the optimization is used to produce target code in the OpenQASM language, which can be executed on existing quantum hardware such as the 16-qubit IBM machine. Using real and synthetic benchmarks, we show that it is feasible to synthesize near-optimal compiled code for current and small NISQ systems. For large programs and machine sizes, the SMT optimization approach can be used to synthesize compiled code that is guaranteed to finish within the coherence window of the machine.Comment: Invited paper in Special Issue on Quantum Computer Architecture: a full-stack overview, Microprocessors and Microsystem

    Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights

    Full text link
    In recent years, Quantum Computing (QC) has progressed to the point where small working prototypes are available for use. Termed Noisy Intermediate-Scale Quantum (NISQ) computers, these prototypes are too small for large benchmarks or even for Quantum Error Correction, but they do have sufficient resources to run small benchmarks, particularly if compiled with optimizations to make use of scarce qubits and limited operation counts and coherence times. QC has not yet, however, settled on a particular preferred device implementation technology, and indeed different NISQ prototypes implement qubits with very different physical approaches and therefore widely-varying device and machine characteristics. Our work performs a full-stack, benchmark-driven hardware-software analysis of QC systems. We evaluate QC architectural possibilities, software-visible gates, and software optimizations to tackle fundamental design questions about gate set choices, communication topology, the factors affecting benchmark performance and compiler optimizations. In order to answer key cross-technology and cross-platform design questions, our work has built the first top-to-bottom toolflow to target different qubit device technologies, including superconducting and trapped ion qubits which are the current QC front-runners. We use our toolflow, TriQ, to conduct {\em real-system} measurements on 7 running QC prototypes from 3 different groups, IBM, Rigetti, and University of Maryland. From these real-system experiences at QC's hardware-software interface, we make observations about native and software-visible gates for different QC technologies, communication topologies, and the value of noise-aware compilation even on lower-noise platforms. This is the largest cross-platform real-system QC study performed thus far; its results have the potential to inform both QC device and compiler design going forward.Comment: Preprint of a publication in ISCA 201

    Bosehedral: Compiler Optimization for Bosonic Quantum Computing

    Full text link
    Bosonic quantum computing, based on the infinite-dimensional qumodes, has shown promise for various practical applications that are classically hard. However, the lack of compiler optimizations has hindered its full potential. This paper introduces Bosehedral, an efficient compiler optimization framework for (Gaussian) Boson sampling on Bosonic quantum hardware. Bosehedral overcomes the challenge of handling infinite-dimensional qumode gate matrices by performing all its program analysis and optimizations at a higher algorithmic level, using a compact unitary matrix representation. It optimizes qumode gate decomposition and logical-to-physical qumode mapping, and introduces a tunable probabilistic gate dropout method. Overall, Bosehedral significantly improves the performance by accurately approximating the original program with much fewer gates. Our evaluation shows that Bosehedral can largely reduce the program size but still maintain a high approximation fidelity, which can translate to significant end-to-end application performance improvement

    Optimized Surface Code Communication in Superconducting Quantum Computers

    Full text link
    Quantum computing (QC) is at the cusp of a revolution. Machines with 100 quantum bits (qubits) are anticipated to be operational by 2020 [googlemachine,gambetta2015building], and several-hundred-qubit machines are around the corner. Machines of this scale have the capacity to demonstrate quantum supremacy, the tipping point where QC is faster than the fastest classical alternative for a particular problem. Because error correction techniques will be central to QC and will be the most expensive component of quantum computation, choosing the lowest-overhead error correction scheme is critical to overall QC success. This paper evaluates two established quantum error correction codes---planar and double-defect surface codes---using a set of compilation, scheduling and network simulation tools. In considering scalable methods for optimizing both codes, we do so in the context of a full microarchitectural and compiler analysis. Contrary to previous predictions, we find that the simpler planar codes are sometimes more favorable for implementation on superconducting quantum computers, especially under conditions of high communication congestion.Comment: 14 pages, 9 figures, The 50th Annual IEEE/ACM International Symposium on Microarchitectur

    Recursive Methods for Synthesizing Permutations on Limited-Connectivity Quantum Computers

    Full text link
    We describe a family of recursive methods for the synthesis of qubit permutations on quantum computers with limited qubit connectivity. Two objectives are of importance: circuit size and depth. In each case we combine a scalable heuristic with a non-scalable, yet exact, synthesis. Our algorithms are applicable to generic connectivity constraints, scale favorably, and achieve close-to-optimal performance in many cases. We demonstrate the utility of these algorithms by optimizing the compilation of Quantum Volume circuits, and to disprove an old conjecture on reversals being the hardest permutation on a path.Comment: DAC '22: The 59th Annual Design Automation Conference 2019 San Francisco CA US
    corecore