1,725 research outputs found
Spin excitations used to probe the nature of the exchange coupling in the magnetically ordered ground state of PrCaMnO
We have used time-of-flight inelastic neutron scattering to measure the spin
wave spectrum of the canonical half-doped manganite
PrCaMnO, in its magnetic and orbitally ordered phase. The
data, which cover multiple Brillouin zones and the entire energy range of the
excitations, are compared with several different models that are all consistent
with the CE-type magnetic order, but arise through different exchange coupling
schemes. The Goodenough model, i.e. an ordered state comprising strong nearest
neighbor ferromagnetic interactions along zig-zag chains with antiferromagnetic
inter-chain coupling, provides the best description of the data, provided that
further neighbor interactions along the chains are included. We are able to
rule out a coupling scheme involving formation of strongly bound ferromagnetic
dimers, i.e. Zener polarons, on the basis of gross features of the observed
spin wave spectrum. A model with weaker dimerization reproduces the observed
dispersion but can be ruled out on the basis of discrepancies between the
calculated and observed structure factors at certain positions in reciprocal
space. Adding further neighbor interactions results in almost no dimerization,
i.e. recovery of the Goodenough model. These results are consistent with
theoretical analysis of the degenerate double exchange model for half-doping,
and provide a recipe for how to interpret future measurements away from
half-doping, where degenerate double exchange models predict more complex
ground states.Comment: 14 pages, 11 figure
A reduced set of moves on one-vertex ribbon graphs coming from links
Every link in R^3 can be represented by a one-vertex ribbon graph. We prove a
Markov type theorem on this subset of link diagrams.Comment: 14 pages, 15 figure
Electron doping evolution of the magnetic excitations in NaFeCoAs
We use time-of-flight (ToF) inelastic neutron scattering (INS) spectroscopy
to investigate the doping dependence of magnetic excitations across the phase
diagram of NaFeCoAs with and .
The effect of electron-doping by partially substituting Fe by Co is to form
resonances that couple with superconductivity, broaden and suppress low energy
( meV) spin excitations compared with spin waves in undoped NaFeAs.
However, high energy ( meV) spin excitations are weakly Co-doping
dependent. Integration of the local spin dynamic susceptibility
of NaFeCoAs reveals a total
fluctuating moment of 3.6 /Fe and a small but systematic reduction
with electron doping. The presence of a large spin gap in the Co-overdoped
nonsuperconducting NaFeCoAs suggests that Fermi surface
nesting is responsible for low-energy spin excitations. These results parallel
Ni-doping evolution of spin excitations in BaFeNiAs, confirming
the notion that low-energy spin excitations coupling with itinerant electrons
are important for superconductivity, while weakly doping dependent high-energy
spin excitations result from localized moments.Comment: 14 pages, 16 figure
Stabilization of Polar Nano Regions in Pb-free ferroelectrics
Formation of polar nano regions through solid-solution additions are known to
enhance significantly the functional properties of ferroelectric materials.
Despite considerable progress in characterizing the microscopic behavior of
polar nano regions, understanding their real-space atomic structure and
dynamics of formation remains a considerable challenge. Here, using the method
of dynamic pair distribution function, we provide direct insights into the role
of solid-solution additions towards the stabilization of polar nano regions in
the Pb-free ferroelectric of Ba(Zr,Ti)O3. It is shown that for an optimum level
of substitution of Ti by larger Zr ions, the dynamics of atomic displacements
for ferroelectric polarization are slowed sufficiently, which leads to
increased local correlation among dipoles below THz frequencies. The dynamic
pair distribution function technique demonstrates unique capability to obtain
insights into locally correlated atomic dynamics in disordered materials,
including new Pb-free ferroelectrics, which is necessary to understand and
control their functional properties
- …