245 research outputs found
Epitaxy and Step Structures on Semiconductor Surfaces
Contains reports on one research project and a list of publications.Joint Services Electronics Program Contract DAAL03-92-C-000
Epitaxy and Step Structures on Semiconductor Surfaces
Contains description on one research project.Joint Services Electronics Program Contract DAAL03-89-C-000
Step Structures and Epitaxy on Semiconductor Surfaces
Contains description of one research project, reports on two research projects and a list of publications.Joint Services Electronics Program Contract DAAL03-92-C-000
Phonon Density of States and Anharmonicity of UO2
Phonon density of states (PDOS) measurements have been performed on
polycrystalline UO2 at 295 and 1200 K using time-of-flight inelastic neutron
scattering to investigate the impact of anharmonicity on the vibrational
spectra and to benchmark ab initio PDOS simulations performed on this strongly
correlated Mott-insulator. Time-of-flight PDOS measurements include anharmonic
linewidth broadening inherently and the factor of ~ 7 enhancement of the oxygen
spectrum relative to the uranium component by the neutron weighting increases
sensitivity to the oxygen-dominated optical phonon modes. The first-principles
simulations of quasi-harmonic PDOS spectra were neutron-weighted and
anharmonicity was introduced in an approximate way by convolution with
wavevector-weighted averages over our previously measured phonon linewidths for
UO2 that are provided in numerical form. Comparisons between the PDOS
measurements and the simulations show reasonable agreement overall, but they
also reveal important areas of disagreement for both high and low temperatures.
The discrepancies stem largely from an ~ 10 meV compression in the overall
bandwidth (energy range) of the oxygen-dominated optical phonons in the
simulations. A similar linewidth-convoluted comparison performed with the PDOS
spectrum of Dolling et al. obtained by shell-model fitting to their historical
phonon dispersion measurements shows excellent agreement with the
time-of-flight PDOS measurements reported here. In contrast, we show by
comparisons of spectra in linewidth-convoluted form that recent
first-principles simulations for UO2 fail to account for the PDOS spectrum
determined from the measurements of Dolling et al. These results demonstrate
PDOS measurements to be stringent tests for ab initio simulations of phonon
physics in UO2 and they indicate further the need for advances in theory to
address lattice dynamics of UO2.Comment: Text slightly modified, results unchange
Epitaxy and Step Structures on Semiconductor Surfaces
Contains report on one research project.Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-000
Phonon anharmonicity and negative thermal expansion in SnSe
The anharmonic phonon properties of SnSe in the Pnma phase were investigated
with a combination of experiments and first-principles simulations. Using
inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray
scattering (NRIXS), we have measured the phonon dispersions and density of
states (DOS) and their temperature dependence, which revealed a strong,
inhomogeneous shift and broadening of the spectrum on warming. First-principles
simulations were performed to rationalize these measurements, and to explain
the previously reported anisotropic thermal expansion, in particular the
negative thermal expansion within the Sn-Se bilayers. Including the anisotropic
strain dependence of the phonon free energy, in addition to the electronic
ground state energy, is essential to reproduce the negative thermal expansion.
From the phonon DOS obtained with INS and additional calorimetry measurements,
we quantify the harmonic, dilational, and anharmonic components of the phonon
entropy, heat capacity, and free energy. The origin of the anharmonic phonon
thermodynamics is linked to the electronic structure.Comment: 14 pages, 12 figure
MCViNE -- An object oriented Monte Carlo neutron ray tracing simulation package
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo
(MC) neutron ray-tracing program that provides researchers with tools for
performing computer modeling and simulations that mirror real neutron
scattering experiments. By adopting modern software engineering practices such
as using composite and visitor design patterns for representing and accessing
neutron scatterers, and using recursive algorithms for multiple scattering,
MCViNE is flexible enough to handle sophisticated neutron scattering problems
including, for example, neutron detection by complex detector systems, and
single and multiple scattering events in a variety of samples and sample
environments. In addition, MCViNE can take advantage of simulation components
in linear-chain-based MC ray tracing packages widely used in instrument design
and optimization, as well as NumPy-based components that make prototypes useful
and easy to develop. These developments have enabled us to carry out detailed
simulations of neutron scattering experiments with non-trivial samples in
time-of-flight inelastic instruments at the Spallation Neutron Source. Examples
of such simulations for powder and single-crystal samples with various
scattering kernels, including kernels for phonon and magnon scattering, are
presented. With simulations that closely reproduce experimental results,
scattering mechanisms can be turned on and off to determine how they contribute
to the measured scattering intensities, improving our understanding of the
underlying physics.Comment: 34 pages, 14 figure
Spin dynamics in antiferromagnetic oxypnictides and fluoropnictides: LaMnAsO, LaMnSbO, and BaMnAsF
Inelastic neutron scattering (INS) from polycrystalline antiferromagnetic LaMnAsO, LaMnSbO, and BaMnAsF are analyzed using a J(1)-J(2)-J(c) Heisenberg model in the framework of the linear spin-wave theory. All three systems show clear evidence that the nearest- and next-nearest-neighbor interactions within the Mn square lattice layer (J(1) and J(2)) are both antiferromagnetic (AFM). However, for all compounds studied the competing interactions have a ratio of 2J(2)/J(1) \u3c 1, which favors the square lattice checkerboard AFM structure over the stripe AFM structure. The interplane coupling Jc in all three systems is on the order of similar to 3 x 10(-4)J(1), rendering the magnetic properties of these systems with quasi-two-dimensional character. The substitution of Sb for As significantly lowers the in-plane exchange coupling, which is also reflected in the decrease of the Neel temperature, T-N. Although BaMnAsF shares the same MnAs sheets as LaMnAsO, their J(1) and J(2) values are substantially different. Using density functional theory, we calculate exchange parameters J(ij) to rationalize the differences among these systems
- …