156 research outputs found

    Induced pluripotent stem cells from hair follicles as a cellular model for neurodevelopmental disorders

    Get PDF
    AbstractDisease-specific induced pluripotent stem cells (iPSC) allow unprecedented experimental platforms for basic research as well as high-throughput screening. This may be particularly relevant for neuropsychiatric disorders, in which the affected neuronal cells are not accessible. Keratinocytes isolated from hair follicles are an ideal source of patients' cells for reprogramming, due to their non-invasive accessibility and their common neuroectodermal origin with neurons, which can be important for potential epigenetic memory. From a small number of plucked human hair follicles obtained from two healthy donors we reprogrammed keratinocytes to pluripotent iPSC. We further differentiated these hair follicle-derived iPSC to neural progenitors, forebrain neurons and functional dopaminergic neurons.This study shows that human hair follicle-derived iPSC can be differentiated into various neural lineages, suggesting this experimental system as a promising in vitro model to study normal and pathological neural developments, avoiding the invasiveness of commonly used skin biopsies

    microRNA-184 induces a commitment switch to epidermal differentiation

    Get PDF
    miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis

    Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions

    Get PDF
    Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease

    Identification of the regulatory circuit governing corneal epithelial fate determination and disease

    Get PDF
    The transparent corneal epithelium in the eye is maintained through the homeostasis regulated by limbal stem cells (LSCs), while the nontransparent epidermis relies on epidermal keratinocytes for renewal. Despite their cellular similarities, the precise cell fates of these two types of epithelial stem cells, which give rise to functionally distinct epithelia, remain unknown. We performed a multi-omics analysis of human LSCs from the cornea and keratinocytes from the epidermis and characterized their molecular signatures, highlighting their similarities and differences. Through gene regulatory network analyses, we identified shared and cell type-specific transcription factors (TFs) that define specific cell fates and established their regulatory hierarchy. Single-cell RNA-seq (scRNA-seq) analyses of the cornea and the epidermis confirmed these shared and cell type-specific TFs. Notably, the shared and LSC-specific TFs can cooperatively target genes associated with corneal opacity. Importantly, we discovered that FOSL2, a direct PAX6 target gene, is a novel candidate associated with corneal opacity, and it regulates genes implicated in corneal diseases. By characterizing molecular signatures, our study unveils the regulatory circuitry governing the LSC fate and its association with corneal opacity

    Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions.

    Get PDF
    Journal ArticleThe Hox genes encode transcription factors which mediate the formation of the mammalian body plan along the anteroposterior and appendicular axes. Paralogous Hox genes within the separate linkage groups are closely related with respect to DNA sequence and expression, suggesting that they could have at least partially redundant functions. We showed previously that mice homozygous for independent targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 had no defects in common. But our current analysis of double mutants has revealed strong, dosage-dependent interactions between these genes. We report here that in hoxd-3- homozygotes the first cervical vertebra, the atlas, is homeotically transformed to the adjacent anterior structure. Unexpectedly, in double mutants, rather than observing a more extensive homeotic transformation, the entire atlas is deleted. These observations are interpreted in terms of a model in which these Hox genes differentially regulate the proliferation rates of the appropriate sets of precursor cells

    Establishing Clonal Cell Lines with Endothelial-Like Potential from CD9(hi), SSEA-1(−) Cells in Embryonic Stem Cell-Derived Embryoid Bodies

    Get PDF
    BACKGROUND: Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. METHODOLOGY/PRINCIPAL FINDINGS: We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r(2) = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9(hi), SSEA-1(−) while ESCs are CD9(lo), SSEA-1(+). Isolation of CD9(hi), SSEA-1(−) cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r(2) = 0.95) and a propensity to differentiate into endothelial-like cells. CONCLUSIONS: By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs

    Lung development in laminin γ2 deficiency: abnormal tracheal hemidesmosomes with normal branching morphogenesis and epithelial differentiation

    Get PDF
    BACKGROUND: Laminin γ2 (Lamc2), one of the polypeptides in laminin-332 (laminin-5), is prominent in the basement membrane of alveolar walls and airways of developing and adult lung. Laminins are important for lung morphogenesis and based on its localization, a function for laminin γ2 in lung development has been hypothesized. Targeted deletion of the laminin γ2 gene in mice results in skin blistering and neonatal death at 3–5 days after birth due to failure to thrive. METHODS: Examination of lung development in Lamc2-/- mice through 1–2 days postnatal was accomplished by morphometric analysis, lung bud culture, electron microscopy, immunohistochemical and immunofluorescence staining. RESULTS: Compared to littermate controls, Lamc2-/- lungs were similar in morphology during embryonic life. At post-natal day 1–2, distal saccules were mildly dilated by chord length measurements. Epithelial differentiation as evaluated by immunohistochemical staining for markers of ciliated cells, Clara cells, alveolar type I cells and alveolar type II cells did not reveal a difference between Lamc2-/- and littermate control lungs. Likewise, vascular development, smooth muscle cell differentiation, and elastic fiber formation looked similar, as did airway basement membrane ultrastructure. Branching morphogenesis by lung bud culture was similar in Lamc2-/- and littermate control lungs. Since laminin-332 is important for hemidesmosome formation, we examined the structure of tracheal hemidesmosomes by transmission electron microscopy. Compared to littermate controls, Lamc2-/- tracheal hemidesmosomes were less organized and lacked the increased electron density associated with the basement membrane abutting the hemidesmosome. CONCLUSION: These findings indicate that laminin γ2 and laminin-332, despite their prominence in the lung, have a minimal role in lung development through the saccular stage
    corecore