223 research outputs found

    COVID19 and seasonal adjustment

    Get PDF

    COVID19 and seasonal adjustment

    Get PDF

    Seasonal adjustment of daily data with CAMPLET

    Get PDF

    Seasonal adjustment of daily data with CAMPLET

    Get PDF
    In the last decade large data sets have become available, both in terms of the number of time series and with higher frequencies (weekly, daily and even higher). All series may suffer from seasonality, which hides other important fluctuations. Therefore time series are typically seasonally adjusted. However, standard seasonal adjustment methods cannot handle series with higher than monthly frequencies. Recently, Abeln et al. (2019) presented CAMPLET, a new seasonal adjustment method, which does not produce revisions when new observations become available. The aim of this paper is to show the attractiveness of CAMPLET for seasonal adjustment of daily time series. We apply CAMPLET to daily data on the gas system in the Netherlands

    Seasonal adjustment of daily data with CAMPLET

    Get PDF

    Consistent treatment of hydrophobicity in protein lattice models accounts for cold denaturation

    Full text link
    The hydrophobic effect stabilizes the native structure of proteins by minimizing the unfavourable interactions between hydrophobic residues and water through the formation of a hydrophobic core. Here we include the entropic and enthalpic contributions of the hydrophobic effect explicitly in an implicit solvent model. This allows us to capture two important effects: a length-scale dependence and a temperature dependence for the solvation of a hydrophobic particle. This consistent treatment of the hydrophobic effect explains cold denaturation and heat capacity measurements of solvated proteins.Comment: Added and corrected references for design procedure in main text (p. 2) and in Supplemental Information (p. 8
    • …
    corecore