43 research outputs found
Contact symmetry of time-dependent Schr\"odinger equation for a two-particle system: symmetry classification of two-body central potentials
Symmetry classification of two-body central potentials in a two-particle
Schr\"{o}dinger equation in terms of contact transformations of the equation
has been investigated. Explicit calculation has shown that they are of the same
four different classes as for the point transformations. Thus in this problem
contact transformations are not essentially different from point
transformations. We have also obtained the detailed algebraic structures of the
corresponding Lie algebras and the functional bases of invariants for the
transformation groups in all the four classes
Flip Graphs of Degree-Bounded (Pseudo-)Triangulations
We study flip graphs of triangulations whose maximum vertex degree is bounded
by a constant . In particular, we consider triangulations of sets of
points in convex position in the plane and prove that their flip graph is
connected if and only if ; the diameter of the flip graph is .
We also show that, for general point sets, flip graphs of pointed
pseudo-triangulations can be disconnected for , and flip graphs of
triangulations can be disconnected for any . Additionally, we consider a
relaxed version of the original problem. We allow the violation of the degree
bound by a small constant. Any two triangulations with maximum degree at
most of a convex point set are connected in the flip graph by a path of
length , where every intermediate triangulation has maximum degree
at most .Comment: 13 pages, 12 figures, acknowledgments update
On reconfiguration of disks in the plane and related problems
We revisit two natural reconfiguration models for systems of disjoint objects in the plane: translation and sliding. Consider a set of n pairwise interior-disjoint objects in the plane that need to be brought from a given start (initial) configuration S into a desired goal (target) configuration T, without causing collisions. In the translation model, in one move an object is translated along a fixed direction to another position in the plane. In the sliding model, one move is sliding an object to another location in the plane by means of an arbitrarily complex continuous motion (that could involve rotations). We obtain various combinatorial and computational results for these two models: (I) For systems of n congruent disks in the translation model, Abellanas et al. showed that 2n − 1 moves always suffice and ⌊8n/5 ⌋ moves are sometimes necessary for transforming the start configuration into the target configuration. Here we further improve the lower bound to ⌊5n/3 ⌋ − 1, and thereby give a partial answer to one of their open problems. (II) We show that the reconfiguration problem with congruent disks in the translation model is NPhard, in both the labeled and unlabeled variants. This answers another open problem of Abellanas et al. (III) We also show that the reconfiguration problem with congruent disks in the sliding model is NP-hard, in both the labeled and unlabeled variants. (IV) For the reconfiguration with translations of n arbitrary convex bodies in the plane, 2n moves are always sufficient and sometimes necessary
A class of solvable Lie algebras and their Casimir Invariants
A nilpotent Lie algebra n_{n,1} with an (n-1) dimensional Abelian ideal is
studied. All indecomposable solvable Lie algebras with n_{n,1} as their
nilradical are obtained. Their dimension is at most n+2. The generalized
Casimir invariants of n_{n,1} and of its solvable extensions are calculated.
For n=4 these algebras figure in the Petrov classification of Einstein spaces.
For larger values of n they can be used in a more general classification of
Riemannian manifolds.Comment: 16 page
Planar subgraphs without low-degree nodes
We study the following problem: given a geometric graph G and an integer k, determine if G has a planar spanning subgraph (with the original embedding and straight-line edges) such that all nodes have degree at least k. If G is a unit disk graph, the problem is trivial to solve for k = 1. We show that even the slightest deviation from the trivial case (e.g., quasi unit disk graphs or k = 1) leads to NP-hard problems.Peer reviewe
Connecting Red Cells in a Bicolour Voronoi Diagram
Let S be a set of n + m sites, of which n are red and have weight wR, and m are blue and weigh wB. The objective of this paper
is to calculate the minimum value of the red sites’ weight such that the union of the red Voronoi cells in the weighted Voronoi diagram of S is a connected region. This problem is solved for the multiplicativelyweighted
Voronoi diagram in O((n+m)2 log(nm)) time and for both the additively-weighted and power Voronoi diagram in O(nmlog(nm)) timePostprint (published version
Casimir invariants for the complete family of quasi-simple orthogonal algebras
A complete choice of generators of the center of the enveloping algebras of
real quasi-simple Lie algebras of orthogonal type, for arbitrary dimension, is
obtained in a unified setting. The results simultaneously include the well
known polynomial invariants of the pseudo-orthogonal algebras , as
well as the Casimirs for many non-simple algebras such as the inhomogeneous
, the Newton-Hooke and Galilei type, etc., which are obtained by
contraction(s) starting from the simple algebras . The dimension of
the center of the enveloping algebra of a quasi-simple orthogonal algebra turns
out to be the same as for the simple algebras from which they come by
contraction. The structure of the higher order invariants is given in a
convenient "pyramidal" manner, in terms of certain sets of "Pauli-Lubanski"
elements in the enveloping algebras. As an example showing this approach at
work, the scheme is applied to recovering the Casimirs for the (3+1)
kinematical algebras. Some prospects on the relevance of these results for the
study of expansions are also given.Comment: 19 pages, LaTe