98 research outputs found

    Crowned spiropyran fluoroionophores with a carboxyl moiety for the selective detection of lithium ions

    Get PDF
    The absorbance and fluorescence spectra of carboxylated spiropyrans containing methyl-1-aza-12-crown-4, methyl-1-aza-15-crown-5, methyl-1-aza-18-crown-6 moieties are compared. Characteristic changes in spectra after addition of the alkali metal salts of Li(+), Na(+), K(+) and Cs(+) were observed. Chromism induced by the binding of the metal cations was observed as an increase in absorbance and fluorescence. Of these metal cations, the Li(+) ion produced the largest change in all three spiropyran systems. Reversible photoswitching of the spiropyran-metal complexes was observed on irradiation with alternating 352 nm UV and white light. This results in reversible fluorescence based sensing of lithium ions with potential for use in a biological sensor device.D. B. Stubing, S. Heng and A. D. Abel

    Light-confining nanoporous anodic alumina microcavities by apodized stepwise pulse anodization

    Get PDF
    This study presents an innovative approach to fabricate nanoporous anodic alumina optical microcavities (NAA-ÎŒCVs) with enhanced quality factor and versatile optical properties. An apodization strategy using a logarithmic negative function is applied to a stepwise pulse anodization process in order to engineer the effective medium of NAA so that it confines light efficiently. The architecture of these light-trapping photonic crystals is composed of two highly reflecting mirrors with an asymmetrically apodized effective medium. Various anodization parameters such as the anodization time, anodization period, current density offset, and pore-widening time are systematically modified to assess their effect on the optical properties of NAA-ÎŒCVs in terms of the quality factor and position of the resonance band. We demonstrate that this fabrication approach enables the generation of NAA-ÎŒCVs with a high quality factor (∌113) and well-resolved and tunable resonance bands across the spectral regions, from UV to near-IR, through manipulation of the anodization parameters. These results represent a comprehensive rationale for the development of high-quality NAA-ÎŒCVs with enhanced light-confining capabilities, providing new opportunities for further fundamental and applied research across a broad range of fields and disciplines such as photonics and optical sensing.Cheryl Suwen Law, Yee Lim, Raeanne M. Macalincag, Andrew D. Abell, and Abel Santo

    Electrochemical plasmonic optical fiber probe for real-time insight into coreactant electrochemiluminescence

    Get PDF
    Electrochemical surface plasmon resonance (ESPR) is a powerful technique for defining dynamic changes in chemical composition and morphology of functional interfaces by correlating spectral information with voltammetric characteristics of the electrode processes. However, conventional Kretschmann prism-based surface plasmon resonance (SPR) configurations require sophisticated apparatus and complex optics. Here, we present a versatile flow injection ESPR device that incorporates a plasmonic and conductive fiber optic probe, for which a gold nanohole array film is integrated onto the endface of a conventional optical fiber via template transfer. The coreactant-based / tripropylamine (TPrA) electrochemiluminescence (ECL) system, was chosen to unravel electrochemically-induced real-time interfacial information, since such an approach is increasingly employed for clinical assay analysis and the associated ECL mechanism is an active area of investigation. The ESPR observations provide novel experimental evidence to support the proposition that the ECL reactions undergo an oxidative-reduction pathway. Moreover, the ESPR peak shift exhibits a broader linear detection range of TPrA concentration (0.02–20 mmol L−1, R2 = 0.996), compared to the ECL and SPR techniques (<10 mmol L−1). This study clearly demonstrates that the novel fiber optic ESPR device presents as a reliable and multimodal spectroelectrochemical platform to gain mechanistic insights into complicated chemical processes and provide sensing capabilities, while offering great simplicity, portability and miniaturization.Jingxian Yu, Peipei Jia, Shengping Wang, Heike Ebendorff-Heidepriem, Andrew D.Abel

    A liposomal platform for sensing of extracellular analytes near cells

    Get PDF
    Cell-permeable fluorescent chemosensors (calcein, monochlorobimane, and a recently reported spiropyran-based sensor SP2) have been incorporated into yeast total lipid extract-based liposomes to suppress inherent cell permeability to allow the detection of extracellular Ca2+, GSH, and Zn2+, respectively. The repurposed sensors have enhanced aqueous solubility and the ability to quantitatively measure biologically relevant concentrations of Ca2+ (0.25 mM⁻1 mM), Zn2+ (6.25 ”M⁻50 ”M), and GSH (0.25 mM⁻1 mM) by fluorescence in aqueous media. In addition, the liposomal sensors are nontoxic to HEK293 cells and have the ability to detect exogenously added Zn2+ (1 mM), Ca2+ (1 mM), or GSH (1 mM) near cells without internalisation. This new sensing platform provides a means to repurpose a range of intracellular fluorescent sensors to specifically detect extracellular analytes, while also improving biocompatibility for overall enhanced use in a wide range of biomedical applications.Xiaozhou Zhang, Sabrina Heng, Jinxin Pei, Jacqueline R. Morey, Christopher A. McDevitt and Andrew D. Abel

    Integrating surface plasmon resonance and slow photon effects in nanoporous anodic alumina photonic crystals for photocatalysis

    Get PDF
    This study explores the potential of gold-coated titania-functionalized nanoporous anodic alumina distributed Bragg reflectors (Au-TiO2-NAA-DBRs) as platforms to enhance photocatalytic reactions by integrating “slow photons” and surface plasmon resonance (SPR). The photocatalytic degradation rate of methylene blue – a model organic compound with a well-defined absorption band in the visible spectral region – by these composite photonic crystals (PCs) upon visible-NIR light irradiation is used as an indicator to identify coupling effects between the “slow photon” effect and SPR. Our study demonstrates that the photocatalytic enhancement in Au-TiO2-NAA-DBRs is strongly associated with “slow photon” effect, while the contribution of SPR to the overall photocatalytic enhancement is weak due to the localized generation of surface plasmons on the top surface of the composite PC structure. Photocatalytic enhancement is optimal when the characteristic photonic stopband of these PCs partially overlaps with the absorption band of methylene blue, which results in edges being positioned away from the absorption maximum of the organic dye. The overall photocatalytic degradation for methylene blue is also correlated to the type of noble metal coating and the geometric features of the PC structures. These results establish a rationale for further development of noble metal-coated NAA-based hybrid plasmonic–photonic crystal photocatalyst platforms to optimally integrate “slow photons” and SPR for enhancing the efficiency of photocatalytic reactions and other light harvesting applications.Siew Yee Lim, Cheryl Suwen Law, Lina Liu, Marijana Markovic, Andrew D. Abell and Abel Santo

    A cell permeable bimane-constrained PCNA-interacting peptide

    Get PDF
    The human sliding clamp protein known as proliferating cell nuclear antigen (PCNA) orchestrates DNA-replication and -repair and as such is an ideal therapeutic target for proliferative diseases, including cancer. Peptides derived from the human p21 protein bind PCNA with high affinity via a 3₁₀-helical binding conformation and are known to shut down DNA-replication. Here, we present studies on short analogues of p21 peptides (143–151) conformationally constrained with a covalent linker between i, i + 4 separated cysteine residues at positions 145 and 149 to access peptidomimetics that target PCNA. The resulting macrocycles bind PCNA with K(D) values ranging from 570 nM to 3.86 ÎŒM, with the bimane-constrained peptide 7 proving the most potent. Subsequent X-ray crystallography and computational modelling studies of the macrocyclic peptides bound to PCNA indicated only the high-affinity peptide 7 adopted the classical 3₁₀-helical binding conformation. This suggests the 3₁₀-helical conformation is critical to high affinity PCNA binding, however NMR secondary shift analysis of peptide 7 revealed this secondary structure was not well-defined in solution. Peptide 7 is cell permeable and localised to the cell cytosol of breast cancer cells (MDA-MB-468), revealed by confocal microscopy showing blue fluorescence of the bimane linker. The inherent fluorescence of the bimane moiety present in peptide 7 allowed it to be directly imaged in the cell uptake assay, without attachment of an auxiliary fluorescent tag. This highlights a significant benefit of using a bimane constraint to access conformationally constrained macrocyclic peptides. This study identifies a small peptidomimetic that binds PCNA with higher affinity than previous reported p21 macrocycles, and is cell permeable, providing a significant advance toward development of a PCNA inhibitor for therapeutic applications.Aimee J. Horsfall, Beth A. Vandborg, Zoya Kikhtyak, Denis B. Scanlon, Wayne D. Tilley, Theresa E. Hickey, John B. Bruning and Andrew D. Abel

    Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%)

    Get PDF
    Study Question: Can we separate embryos cultured under either 7% or 20% oxygen atmospheres by measuring their metabolic heterogeneity? Summary Answer: Metabolic heterogeneity and changes in metabolic profiles in morula exposed to two different oxygen concentrations were not detectable using traditional fluorophore and two-channel autofluorescence but were detectable using hyperspectral microscopy. What is Known Already: Increased genetic and morphological blastomere heterogeneity is associated with compromised developmental competence of embryos and currently forms the basis for embryo scoring within the clinic. However, there remains uncertainty over the accuracy of current techniques, such as PGS and time-lapse microscopy, to predict subsequent pregnancy establishment. Study Design, Size, Duration: The impact of two oxygen concentrations (7% = optimal and 20% = stressed) during post-fertilisation embryo culture was assessed. Cattle embryos were exposed to the different oxygen concentrations for 8 days (D8; embryo developmental competence) or 5 days (D5; metabolism measurements). Between 3 and 4 experimental replicates were performed, with 40–50 embryos per replicate used for the developmental competency experiment, 10–20 embryos per replicate for the fluorophore and two-channel autofluorescence experiments and a total of 21–22 embryos used for the hyperspectral microscopy study. Participants/Materials, Setting, Methods: In-vitro produced (IVP) cattle embryos were utilised for this study. Post-fertilisation, embryos were exposed to 7% or 20% oxygen. To determine impact of oxygen concentrations on embryo viability, blastocyst development was assessed on D8. On D5, metabolic heterogeneity was assessed in morula (on-time) embryos using fluorophores probes (active mitochondria, hydrogen peroxide and reduced glutathione), two-channel autofluorescence (FAD and NAD(P)H) and 18-channel hyperspectral microscopy. Main Results and the Role of Chance: Exposure to 20% oxygen following fertilisation significantly reduced total blastocyst, expanded and hatched blastocyst rates by 1.4-, 1.9- and 2.8-fold, respectively, compared to 7% oxygen (P 0.05). While there were no significant differences in two-channel autofluorescent profiles of morula exposed to 7% and 20% oxygen (main effect, P > 0.05), morula that subsequently progressed to the blastocyst stage had significantly higher levels of FAD and NAD(P)H fluorescence compared to arrested morula (P < 0.05), with no change in the redox ratio. Hyperspectral autofluorescence imaging (in 18-spectral channels) of the D5 morula revealed highly significant differences in four features of the metabolic profiles of morula exposed to the two different oxygen concentrations (P < 0.001). These four features were weighted and their linear combination revealed clear discrimination between the two treatment groups. Limitations, Reasons for Caution: Metabolic profiles were assessed at a single time point (morula), and as such further investigation is required to determine if differences in hyperspectral signatures can be detected in pre-compaction embryos and oocytes, using both cattle and subsequently human models. Furthermore, embryo transfers should be performed to determine the relationship between metabolic profiles and pregnancy success. Wider Implications of the Findings: Advanced autofluorescence imaging techniques, such as hyperspectral microscopy, may provide clinics with additional tools to improve the assessment of embryos prior to transfer.Melanie L. Sutton-McDowall, Martin Gosnell, Ayad G. Anwer, Melissa White, Malcolm Purdey, Andrew D. Abell, Ewa M. Goldys, and Jeremy G. Thompso

    A biophotonic approach to measure pH in small volumes in vitro: quantifiable differences in metabolic flux around the cumulus-oocyte-complex (COC)

    Get PDF
    Unfertilised eggs (oocytes) release chemical biomarkers into the medium surrounding them. This provides an opportunity to monitor cell health and development during assisted reproductive processes if detected in a non-invasive manner. Here we report the measurement of pH using an optical fibre probe, OFP1, in 5 ÎŒL drops of culture medium containing single mouse cumulus-oocyte-complexes (COCs). This allowed for the detection of statistically significant differences in pH between COCs in culture medium with no additives and those incubated with either a chemical (cobalt chloride) or hormonal treatment (follicle stimulating hormone); both of which serve to induce the release of lactic acid into the medium immediately surrounding the COC. Importantly, OFP1 was shown to be cell-safe with no inherent cell toxicity or light-induced phototoxicity indicated by negative DNA damage staining. Pre-measurement photobleaching of the probe reduced fluorescence signal variability, providing improved measurement precision (0.01 - 0.05 pH units) compared to previous studies. This optical technology presents a promising platform for the measurement of pH and the detection of other extracellular biomarkers to assess cell health during assisted reproduction. This article is protected by copyright. All rights reserved.Hanna J. McLennan, Avishkar Saini, Georgina M. Sylvia, Erik P. Schartner, Kylie R. Dunning, Malcolm S. Purdey, Tanya M. Monro, Andrew D. Abell, Jeremy G. Thompso

    Electrochemical engineering of nanoporous materials for photocatalysis: fundamentals, advances, and perspectives

    Get PDF
    Photocatalysis comprises a variety of light-driven processes in which solar energy is converted into green chemical energy to drive reactions such as water splitting for hydrogen energy generation, degradation of environmental pollutants, CO₂ reduction and NH3 production. Electrochemically engineered nanoporous materials are attractive photocatalyst platforms for a plethora of applications due to their large effective surface area, highly controllable and tuneable light-harvesting capabilities, efficient charge carrier separation and enhanced diffusion of reactive species. Such tailor-made nanoporous substrates with rational chemical and structural designs provide new exciting opportunities to develop advanced optical semiconductor structures capable of performing precise and versatile control over light–matter interactions to harness electromagnetic waves with unprecedented high efficiency and selectivity for photocatalysis. This review introduces fundamental developments and recent advances of electrochemically engineered nanoporous materials and their application as platforms for photocatalysis, with a final prospective outlook about this dynamic field.Siew Yee Lim, Cheryl Suwen Law, Lina Liu, Marijana Markovic, Carina Hedrich, Robert H. Blick, Andrew D. Abell, Robert Zierold, and Abel Santo

    Optical fibre-enabled photoswitching for localised activation of an anti-cancer therapeutic drug

    Get PDF
    Local activation of an anti-cancer drug when and where needed can improve selectivity and reduce undesirable side effects. Photoswitchable drugs can be selectively switched between active and inactive states by illumination with light; however, the clinical development of these drugs has been restricted by the difficulty in delivering light deep into tissue where needed. Optical fibres have great potential for light delivery in vivo, but their use in facilitating photoswitching in anti-cancer compounds has not yet been explored. In this paper, a photoswitchable chemotherapeutic is switched using an optical fibre, and the cytotoxicity of each state is measured against HCT-116 colorectal cancer cells. The performance of optical-fibre-enabled photoswitching is characterised through its dose response. The UV–Vis spectra confirm light delivered by an optical fibre effectively enables photoswitching. The activated drug is shown to be twice as effective as the inactive drug in causing cancer cell death, characterised using an MTT assay and fluorescent microscopy. This is the first study in which a photoswitchable anti-cancer compound is switched using an optical fibre and demonstrates the feasibility of using optical fibres to activate photoswitchable drugs for potential future clinical applications.Kathryn A. Palasis, Noor A. Lokman, Bryden C. Quirk, Alaknanda Adwal, Loretta Scolaro, Weikun Huang, Carmela Ricciardelli, Martin K. Oehler, Robert A. McLaughlin and Andrew D. Abel
    • 

    corecore