99 research outputs found

    Understanding and engineering beneficial plant–microbe interactions:Plant growth promotion in energy crops

    Get PDF
    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant–microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant–microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant–microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications

    Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripeningrelated genes isolated by differential display.

    Get PDF
    Differential display was used to isolate early ethyleneregulated genes from late immature green tomato fruit in order to obtain a broader understanding of the molecular basis by which ethylene coordinates the ripening process. Nineteen novel ethylene-responsive (ER) cDNA clones were isolated that fell into three classes: (i) ethylene up-regulated (ii) ethylene downregulated, and (iii) transiently induced. Expression analysis revealed that ethylene-dependent changes in mRNA accumulation occurred rapidly (15 min) for most of the ER clones. The predicted proteins encoded by the ER genes are putatively involved in processes as diverse as primary metabolism, hormone signalling and stress responses. Although a number of the isolated ER clones correspond to genes already documented in other species, their responsiveness to ethylene is described here for the ®rst time. Among the ER clones sharing high homology with regulatory genes, ER43, a putative GTP-binding protein, and ER50, a CTR1-like clone, are potentially involved in signal transduction. ER24 is homologous to the multiprotein bridging factor MBF1 involved in transcriptional activation, and ®nally, two clones are homologous to genes involved in post-transcriptional regulation: ER49, a putative translational elongation factor, and ER68, a mRNA helicase-like gene. Six ER clones correspond to as yet unidenti®ed genes. The expression studies indicated that all the ER genes are ripening-regulated, and, depending on the clone, show changes in transcript accumulation either at the breaker, turning, or red stage. Analysis of transcript accumulation in different organs indicated a strong bias towards expression in the fruit for many of the clones. The potential roles for some of the ER clone

    Regulation of the turnover of ACC

    No full text
    • …
    corecore