522 research outputs found
Age-Related Differences in Susceptibility to Carcinogenesis: A Quantitative Analysis of Empirical Animal Bioassay Data
In revising cancer risk assessment guidelines, the U.S. Environmental Protection Agency (EPA) analyzed animal cancer bioassay data over different periods of life. In this article, we report an improved analysis of these data (supplemented with some chemical carcinogenesis observations not included in the U.S. EPA’s original analysis) and animal bioassay studies of ionizing radiation. We use likelihood methods to avoid excluding cases where no tumors were observed in specific groups. We express dosage for animals of different weights on a metabolically consistent basis (concentration in air or food, or per unit body weight to the three-quarters power). Finally, we use a system of dummy variables to represent exposures during fetal, preweaning, and weaning–60-day postnatal periods, yielding separate estimates of relative sensitivity per day of dosing in these intervals. Central estimate results indicate a 5- to 60-fold increased carcinogenic sensitivity in the birth–weaning period per dose ÷ (body weight(0.75)-day) for mutagenic carcinogens and a somewhat smaller increase—centered about 5-fold—for radiation carcinogenesis per gray. Effects were greater in males than in females. We found a similar increased sensitivity in the fetal period for direct-acting nitrosoureas, but no such increased fetal sensitivity was detected for carcinogens requiring metabolic activation. For the birth–weaning period, we found an increased sensitivity for direct administration to the pups similar to that found for indirect exposure via lactation. Radiation experiments indicated that carcinogenic sensitivity is not constant through the “adult” period, but the dosage delivered in 12- to 21-month-old animals appears a few-fold less effective than the comparable dosage delivered in young adults (90–105 days of age)
Supersymmetry in the shadow of photini
Additional neutral gauge fermions -- "photini" -- arise in string
compactifications as superpartners of U(1) gauge fields. Unlike their vector
counterparts, the photini can acquire weak-scale masses from soft SUSY breaking
and lead to observable signatures at the LHC through mass mixing with the bino.
In this work we investigate the collider consequences of adding photini to the
neutralino sector of the MSSM. Relatively large mixing of one or more photini
with the bino can lead to prompt decays of the lightest ordinary supersymmetric
particle; these extra cascades transfer most of the energy of SUSY decay chains
into Standard Model particles, diminishing the power of missing energy as an
experimental handle for signal discrimination. We demonstrate that the missing
energy in SUSY events with photini is reduced dramatically for supersymmetric
spectra with MSSM neutralinos near the weak scale, and study the effects on
limits set by the leading hadronic SUSY searches at ATLAS and CMS. We find that
in the presence of even one light photino the limits on squark masses from
hadronic searches can be reduced by 400 GeV, with comparable (though more
modest) reduction of gluino mass limits. We also consider potential discovery
channels such as dilepton and multilepton searches, which remain sensitive to
SUSY spectra with photini and can provide an unexpected route to the discovery
of supersymmetry. Although presented in the context of photini, our results
apply in general to theories in which additional light neutral fermions mix
with MSSM gauginos.Comment: 23 pages, 8 figures, references adde
Constraining noncommutative field theories with holography
An important window to quantum gravity phenomena in low energy noncommutative
(NC) quantum field theories (QFTs) gets represented by a specific form of UV/IR
mixing. Yet another important window to quantum gravity, a holography,
manifests itself in effective QFTs as a distinct UV/IR connection. In matching
these two principles, a useful relationship connecting the UV cutoff
, the IR cutoff and the scale of
noncommutativity , can be obtained. We show that an effective
QFT endowed with both principles may not be capable to fit disparate
experimental bounds simultaneously, like the muon and the masslessness of
the photon. Also, the constraints from the muon preclude any possibility
to observe the birefringence of the vacuum coming from objects at cosmological
distances. On the other hand, in NC theories without the UV completion, where
the perturbative aspect of the theory (obtained by truncating a power series in
) becomes important, a heuristic estimate of the region
where the perturbative expansion is well-defined , gets affected when holography is applied by providing the energy of the
system a -dependent lower limit. This may affect models
which try to infer the scale by using data from low-energy
experiments.Comment: 4 pages, version to be published in JHE
Tethered cord: natural history, surgical outcome and risk for Chiari malformation 1 (CM1): A review of 110 detethering
The surgical results of this series of occult spina bifida seem better than the natural history registered in the long pre-operative period in terms of neurological deterioration. The major contribution to this result is attributed to neurophysiological monitoring that lowers the risks of permanent damage and increases the percentage of effective detethering. The present series of TCS, due to conus and filar lipoma, documents that CM1 is a really rare association occurring in less than 6% of the patients, despite the low position of conus. The detethering procedure did not influence the tonsillar position, thus excluding the correlation between the tethering and the tonsillar descent. The genetic alteration documented in a girl reinforces the hypothesis of a rare complex polymaformative picture deserving multiple procedures according to the prevailing clinical symptoms
The Schrdinger-Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics
In this paper it is argued how the dynamics of the classical Newtonian N-body
system can be described in terms of the Schrdinger-Poisson equations
in the large limit. This result is based on the stochastic quantization
introduced by Nelson, and on the Calogero conjecture. According to the Calogero
conjecture, the emerging effective Planck constant is computed in terms of the
parameters of the N-body system as , where is the gravitational constant, and are the
number and the mass of the bodies, and is their average density. The
relevance of this result in the context of large scale structure formation is
discussed. In particular, this finding gives a further argument in support of
the validity of the Schrdinger method as numerical double of the
N-body simulations of dark matter dynamics at large cosmological scales.Comment: Accepted for publication in the Euro. Phys. J.
Human newborn bacille Calmette–Guérin vaccination and risk of tuberculosis disease: a case-control study
: An incomplete understanding of the immunological mechanisms underlying protection against tuberculosis (TB) hampers the development of new vaccines against TB. We aimed to define host correlates of prospective risk of TB disease following bacille Calmette-Guérin (BCG) vaccination. : In this study, 5,726 infants vaccinated with BCG at birth were enrolled. Host responses in blood collected at 10 weeks of age were compared between infants who developed pulmonary TB disease during 2 years of follow-up (cases) and those who remained healthy (controls). : Comprehensive gene expression and cellular and soluble marker analysis failed to identify a correlate of risk. We showed that distinct host responses after BCG vaccination may be the reason: two major clusters of gene expression, with different myeloid and lymphoid activation and inflammatory patterns, were evident when all infants were examined together. Cases from each cluster demonstrated distinct patterns of gene expression, which were confirmed by cellular assays. : Distinct patterns of host responses to Mycobacterium bovis BCG suggest that novel TB vaccines may also elicit distinct patterns of host responses. This diversity should be considered in future TB vaccine development
Retroviral Integration Process in the Human Genome: Is It Really Non-Random? A New Statistical Approach
Retroviral vectors are widely used in gene therapy to introduce therapeutic genes into patients' cells, since, once delivered to the nucleus, the genes of interest are stably inserted (integrated) into the target cell genome. There is now compelling evidence that integration of retroviral vectors follows non-random patterns in mammalian genome, with a preference for active genes and regulatory regions. In particular, Moloney Leukemia Virus (MLV)–derived vectors show a tendency to integrate in the proximity of the transcription start site (TSS) of genes, occasionally resulting in the deregulation of gene expression and, where proto-oncogenes are targeted, in tumor initiation. This has drawn the attention of the scientific community to the molecular determinants of the retroviral integration process as well as to statistical methods to evaluate the genome-wide distribution of integration sites. In recent approaches, the observed distribution of MLV integration distances (IDs) from the TSS of the nearest gene is assumed to be non-random by empirical comparison with a random distribution generated by computational simulation procedures. To provide a statistical procedure to test the randomness of the retroviral insertion pattern, we propose a probability model (Beta distribution) based on IDs between two consecutive genes. We apply the procedure to a set of 595 unique MLV insertion sites retrieved from human hematopoietic stem/progenitor cells. The statistical goodness of fit test shows the suitability of this distribution to the observed data. Our statistical analysis confirms the preference of MLV-based vectors to integrate in promoter-proximal regions
Hypernovae and Other Black-Hole-Forming Supernovae
During the last few years, a number of exceptional core-collapse supernovae
(SNe) have been discovered. Their kinetic energy of the explosions are larger
by more than an order of magnitude than the typical values for this type of
SNe, so that these SNe have been called `Hypernovae'. We first describe how the
basic properties of hypernovae can be derived from observations and modeling.
These hypernovae seem to come from rather massive stars, thus forming black
holes. On the other hand, there are some examples of massive SNe with only a
small kinetic energy. We suggest that stars with non-rotating black holes are
likely to collapse "quietly" ejecting a small amount of heavy elements (Faint
supernovae). In contrast, stars with rotating black holes are likely to give
rise to very energetic supernovae (Hypernovae). We present distinct
nucleosynthesis features of these two types of "black-hole-forming" supernovae.
Hypernova nucleosynthesis is characterized by larger abundance ratios
(Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe. Nucleosynthesis in Faint supernovae is
characterized by a large amount of fall-back. We show that the abundance
pattern of the most Fe deficient star, HE0107-5240, and other extremely
metal-poor carbon-rich stars are in good accord with those of
black-hole-forming supernovae, but not pair-instability supernovae. This
suggests that black-hole-forming supernovae made important contributions to the
early Galactic (and cosmic) chemical evolution.Comment: 49 pages, to be published in "Stellar Collapse" (Astrophysics and
Space Science; Kluwer) ed. C. L. Fryer (2003
Strong coupling, discrete symmetry and flavour
We show how two principles - strong coupling and discrete symmetry - can work
together to generate the flavour structure of the Standard Model. We propose
that in the UV the full theory has a discrete flavour symmetry, typically only
associated with tribimaximal mixing in the neutrino sector. Hierarchies in the
particle masses and mixing matrices then emerge from multiple strongly coupled
sectors that break this symmetry. This allows for a realistic flavour
structure, even in models built around an underlying grand unified theory. We
use two different techniques to understand the strongly coupled physics:
confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both
approaches yield equivalent results and can be represented in a clear,
graphical way where the flavour symmetry is realised geometrically.Comment: 31 pages, 5 figures, updated references and figure
- …