4 research outputs found
Lightest-neutralino decays in R_p-violating models with dominant lambda^{prime} and lambda couplings
Decays of the lightest neutralino are studied in R_p-violating models with
operators lambda^{prime} L Q D^c and lambda L L E^c involving third-generation
matter fields and with dominant lambda^{prime} and lambda couplings.
Generalizations to decays of the lightest neutralino induced by subdominant
lambda^{prime} and lambda couplings are straightforward. Decays with the
top-quark among the particles produced are considered, in addition to those
with an almost massless final state. Phenomenological analyses for examples of
both classes of decays are presented. No specific assumption on the composition
of the lightest neutralino is made, and the formulae listed here can be easily
generalized to study decays of heavier neutralinos. It has been recently
pointed out that, for a sizable coupling lambda^{prime}_{333}, tau-sleptons may
be copiously produced at the LHC as single supersymmetric particles, in
association with top- and bottom-quark pairs. This analysis of neutralino
decays is, therefore, a first step towards the reconstruction of the complete
final state produced in this case.Comment: 40 pages, 11 figures, version to appear in JHE
Kaluza-Klein Dark Matter, Electrons and Gamma Ray Telescopes
Kaluza-Klein dark matter particles can annihilate efficiently into
electron-positron pairs, providing a discrete feature (a sharp edge) in the
cosmic spectrum at an energy equal to the particle's mass (typically
several hundred GeV to one TeV). Although this feature is probably beyond the
reach of satellite or balloon-based cosmic ray experiments (those that
distinguish the charge and mass of the primary particle), gamma ray telescopes
may provide an alternative detection method. Designed to observe very
high-energy gamma-rays, ACTs also observe the diffuse flux of electron-induced
electromagnetic showers. The GLAST satellite, designed for gamma ray astronomy,
will also observe any high energy showers (several hundred GeV and above) in
its calorimeter. We show that high-significance detections of an
electron-positron feature from Kaluza-Klein dark matter annihilations are
possible with GLAST, and also with ACTs such as HESS, VERITAS or MAGIC.Comment: 10 pages, 2 figure
Determining Supersymmetric Parameters With Dark Matter Experiments
In this article, we explore the ability of direct and indirect dark matter
experiments to not only detect neutralino dark matter, but to constrain and
measure the parameters of supersymmetry. In particular, we explore the
relationship between the phenomenological quantities relevant to dark matter
experiments, such as the neutralino annihilation and elastic scattering cross
sections, and the underlying characteristics of the supersymmetric model, such
as the values of mu (and the composition of the lightest neutralino), m_A and
tan beta. We explore a broad range of supersymmetric models and then focus on a
smaller set of benchmark models. We find that by combining astrophysical
observations with collider measurements, mu can often be constrained far more
tightly than it can be from LHC data alone. In models in the A-funnel region of
parameter space, we find that dark matter experiments can potentially determine
m_A to roughly +/-100 GeV, even when heavy neutral MSSM Higgs bosons (A, H_1)
cannot be observed at the LHC. The information provided by astrophysical
experiments is often highly complementary to the information most easily
ascertained at colliders.Comment: 46 pages, 76 figure
The Muon Magnetic Moment and Supersymmetry
The present review is devoted to the muon magnetic moment and its role in
supersymmetry phenomenology. Analytical results for the leading supersymmetric
one- and two-loop contributions are provided, numerical examples are given and
the dominant tan(beta)sign(mu)/M_SUSY^2 behaviour is qualitatively explained.
The consequences of the Brookhaven measurement are discussed. The 2 sigma
deviation from the Standard Model prediction implies preferred ranges for
supersymmetry parameters, in particular upper and lower mass bounds.
Correlations with other observables from collider physics and cosmology are
reviewed. We give, wherever possible, an intuitive understanding of each result
before providing a detailed discussion.Comment: Topical Review; 54 pages, 18 figure