2 research outputs found

    X-ray Scattering Study of the spin-Peierls transition and soft phonon behavior in TiOCl

    Full text link
    We have studied the S=1/2 quasi-one-dimensional antiferromagnet TiOCl using single crystal x-ray diffraction and inelastic x-ray scattering techniques. The Ti ions form staggered spin chains which dimerize below Tc1 = 66 K and have an incommensurate lattice distortion between Tc1 and Tc2 = 92 K. Based on our measurements of the intensities, wave vectors, and harmonics of the incommensurate superlattice peaks, we construct a model for the incommensurate modulation. The results are in good agreement with a soliton lattice model, though some quantitative discrepancies exist near Tc2. The behavior of the phonons has been studied using inelastic x-ray scattering with ~2 meV energy resolution. For the first time, a zone boundary phonon which softens at the spin-Peierls temperature Tsp has been observed. Our results show reasonably good quantitative agreement with the Cross-Fisher theory for the phonon dynamics at wave vectors near the zone boundary and temperatures near Tsp. However, not all aspects of the data can be described, such as the strong overdamping of the soft mode above Tsp. Overall, our results show that TiOCl is a good realization of a spin-Peierls system, where the phonon softening allows us to identify the transition temperature as Tsp=Tc2=92 KComment: 14 pages, 14 figure

    Cluster Dynamical Mean-field calculations for TiOCl

    Full text link
    Based on a combination of cluster dynamical mean field theory (DMFT) and density functional calculations, we calculated the angle-integrated spectral density in the layered s=1/2s=1/2 quantum magnet TiOCl. The agreement with recent photoemission and oxygen K-edge X-ray absorption spectroscopy experiments is found to be good. Th e improvement achieved with this calculation with respect to previous single-site DMFT calculations is an indication of the correlated nature and low-dimensionality of TiOCl.Comment: 9 pages, 3 figures, improved version as publishe
    corecore