234 research outputs found

    Registration of GEMS-0001 Maize Germplasm Resistant to Leaf Blade, Leaf Sheath, and Collar Feeding by European Corn Borer

    Get PDF
    This article is from Crop Science 41 (2001): 1651–1652, doi:10.2135/cropsci2001.4151651x.</p

    Charge and Colour Breaking Constraints in the MSSM With Non-Universal SUSY Breaking

    Get PDF
    We examine charge/colour breaking along directions in supersymmetric field space which are F and D-flat. We catalogue the dangerous directions and include some new ones which have not previously been considered. Analytic expressions for the resulting constraints are provided which are valid for all patterns of supersymmetry breaking. As an example we consider a recently proposed pattern of supersymmetry breaking derived in Horava-Witten M-theory, and show that there is no choice of parameters for which the physical vacuum is a global minimum.Comment: 12 Pages plain latex; includes 1 postscript figure. Final version to appear in PL

    ISS-flation

    Get PDF
    Inflation may occur while rolling into the metastable supersymmetry-breaking vacuum of massive supersymmetric QCD. We explore the range of parameters in which slow-roll inflation and long-lived metastable supersymmetry breaking may be simultaneously realized. The end of slow-roll inflation in this context coincides with the spontaneous breaking of a global symmetry, which may give rise to significant curvature perturbations via inhomogenous preheating. Such spontaneous symmetry breaking at the end of inflation may give rise to observable non-gaussianities, distinguishing this scenario from more conventional models of supersymmetric hybrid inflation.Comment: 26 page

    First Stars. I. Evolution without mass loss

    Full text link
    The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M > 100 Mo. These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300 Mo galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10E-6 and 10E-9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on the main sequence, and during the hydrogen and helium burning phases, are described. Low metallicity massive stars are hotter and more compact and luminous than their metal enriched counterparts. Due to their high temperatures, pregalactic stars activate sooner the triple alpha reaction self-producing their own heavy elements. Both galactic and pregalactic stars are radiation pressure dominated and evolve below the Eddington luminosity limit with short lifetimes. The physical characteristics of the first stars have an important influence in predictions of the ionizing photon yields from the first luminous objects; also they develop large convective cores with important helium core masses which are important for explosion calculations.Comment: 17 pages, 24 figures, 2 table

    Inflation and Brane Gases

    Get PDF
    We investigate a new way of realizing a period of cosmological inflation in the context of brane gas cosmology. It is argued that a gas of co-dimension one branes, out of thermal equilibrium with the rest of the matter, has an equation of state which can - after stabilization of the dilaton - lead to power-law inflation of the bulk. The most promising implementation of this mechanism might be in Type IIB superstring theory, with inflation of the three large spatial dimensions triggered by ``stabilized embedded 2-branes''. Possible applications and problems with this proposal are discussed.Comment: 7 pages, uses REVTeX, version to appear in Phys. Rev.

    Methods to estimate aboveground wood productivity from long-term forest inventory plots

    Get PDF
    Forest inventory plots are widely used to estimate biomass carbon storage and its change over time. While there has been much debate and exploration of the analytical methods for calculating biomass, the methods used to determine rates of wood production have not been evaluated to the same degree. This affects assessment of ecosystem fluxes and may have wider implications if inventory data are used to parameterise biospheric models, or scaled to large areas in assessments of carbon sequestration. Here we use a dataset of 35 long-term Amazonian forest inventory plots to test different methods of calculating wood production rates. These address potential biases associated with three issues that routinely impact the interpretation of tree measurement data: (1) changes in the point of measurement (POM) of stem diameter as trees grow over time; (2) unequal length of time between censuses; and (3) the treatment of trees that pass the minimum diameter threshold (“recruits”). We derive corrections that control for changing POM height, that account for the unobserved growth of trees that die within census intervals, and that explore different assumptions regarding the growth of recruits during the previous census interval. For our dataset we find that annual aboveground coarse wood production (AGWP; in Mg ha−1 year−1 of dry matter) is underestimated on average by 9.2% if corrections are not made to control for changes in POM height. Failure to control for the length of sampling intervals results in a mean underestimation of 2.7% in annual AGWP in our plots for a mean interval length of 3.6 years. Different methods for treating recruits result in mean differences of up to 8.1% in AGWP. In general, the greater the length of time a plot is sampled for and the greater the time elapsed between censuses, the greater the tendency to underestimate wood production. We recommend that POM changes, census interval length, and the contribution of recruits should all be accounted for when estimating productivity rates, and suggest methods for doing this.European UnionUK Natural Environment Research CouncilGordon and Betty Moore FoundationCASE sponsorship from UNEP-WCMCRoyal Society University Research FellowshipERC Advanced Grant “Tropical Forests in the Changing Earth System”Royal Society Wolfson Research Merit Awar

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ
    • 

    corecore