32 research outputs found
Nucleic Acids Res
Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors
A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma
Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC
Function of FMRP by analyzing its interactors
Le Syndrome de l'X fragile (FXS) est la forme la plus fréquente de retard mental héréditaire. Il est causé par l’inactivation du gène FMR1 codant une RNA Binding Protein (FMRP) impliquée dans le contrôle de la traduction. Afin de mieux comprendre la fonction de FMRP, nous nous somme intéressé à ses interacteurs et mon travail s’est organisé en deux parties: la caractérisation de l'interaction FMRP/ARNm GRK4 et la caractérisation de la fonction neuronale de CYFIP1/2, deux protéines interacteurs de FMRP. Nous avons confirmé l'interaction FMRP/ARNm GRK4 et identifié une portion contenant deux motifs ACUK / WGGA, connu pour être de nouvelles cibles pour FMRP. FMRP se lie à GRK4 via son domaine RGG-box et régule négativement sa traduction. Dans les cellules granulaires du cervelet, GRK4 se lie au récepteur GABABR(GBR), induisant sa désensibilisation. Sachant l’importance de la signalisation GBR du cervelet dans la coordination motrice, un niveau élevé de GRK4 peut contribuer au déficit de l'apprentissage moteur et la coordination des mouvements dans FXS. Nous avons également caractérisé la fonction neuronale de CYFIP1/2 en induisant leur knockdown (KD). Ces protéines appartiennent au complexe WAVE (WRC) qui est impliqué dans la régulation de l’établissement de la polarité axonale et dendritique. Nous avons identifié un mécanisme de co-régulation de la transcription des ARNm codant les membres du WRC lors de l’altération de l'expression de CYFIP1/2. Le KD CYFIP1/2 modifie également neuronale ramification et connectivités. L'interaction de FMRP/CYFIP1/2 permettrait de comprendre les mécanismes impliqués dans le développement des anomalies des épines dendritiques dans FXS.Fragile X syndrome (FXS) is the most common form of inherited mental retardation. It is caused by the silencing of the FMR1 gene, which encodes for an RNA-binding protein (FMRP) involved in translational control. To better understand the function of FMRP, we are interested in its interactors and so my work was organized into two main parts: the characterization of the interaction between FMRP and GRK4 mRNA and the characterization of the neuronal function of CYFIP1/2, two FMRP interacting proteins. We confirmed in vivo and in vitro the FMRP/ GRK4 mRNA interaction and identified a portion containing two ACUK/WGGA motifs, known to be a novel targets for FMRP. FMRP binds this target via its RGG box domain and negatively modulates the expression of GRK4 at the translational level only in cerebellum. In cerebellar granule cells, GRK4 interacts directly with the GABAB receptor (GBR), promoting its desensitization. Since in cerebellum GBR signaling has a relevant role in motor coordination, an elevated level of GRK4 can contribute to deficits of motor learning and movement coordination in FXS. Next, we characterized the function of CYFIP1/2 in neurons by inducing their knockdown (KD). CYFIP1/2 are components of the canonical WAVE regulatory complex (WRC), important in the spatiotemporal regulation of actin dynamics to get correct axonal and dendrites polarity and branching. We identified a co-regulation of transcription of mRNA coding the WRC members when the expression of CYFIP1/2 is disturbed. KD CYFIP1/2 also alters neuronal branching. The FMRP/CYFIP1/2 interaction would allow us to understand the mechanisms involved in the development of dendritic spines abnormalities in FXS
Dyrk1A, a Serine/Threonine Kinase, is Involved in ERK and Akt Activation in the Brain of Hyperhomocysteinemic Mice
Hyperhomocysteinemia due to cystathionine beta synthase (CBS) deficiency is associated with diverse brain disease. Whereas the biological actions linking hyperhomocysteinemia to the cognitive dysfunction are not well understood, we tried to establish relationships between hyperhomocysteinemia and alterations of signaling pathways. In the brain of CBS-deficient mice, a murine model of hyperhomocysteinemia, we previously found an activation of extracellular signal-regulated kinase (ERK) pathway and an increase of Dyrk1A, a serine/threonine kinase involved in diverse functions ranging from development and growth to apoptosis. We then investigated the relationship between Dyrk1A and the signaling pathways initiated by receptor tyrosine kinases (RTK), the ERK and PI3K/Akt pathways. We found a significant increase of phospho-ERK, phospho-MEK, and phospho-Akt in the brain of CBS-deficient and Dyrk1a-overexpressing mice. This increase was abolished when CBS-deficient and Dyrk1A-transgenic mice were treated with harmine, an inhibitor of Dyrk1A kinase activity, which emphasizes the role of Dyrk1A activity on ERK and Akt activation. Sprouty 2 protein level, a negative feedback loop modulator that limits the intensity and duration of RTK activation, is decreased in the brain of CBS-deficient mice, but not in the brain of Dyrk1A transgenic mice. Furthermore, a reduced Dyrk1A and Grb2 binding on sprouty 2 and an increased interaction of Dyrk1A with Grb2 were found in the brain of Dyrk1A transgenic mice. The consequence of Dyrk1A overexpression on RTK activation seems to be a decreased interaction of sprouty 2/Grb2. These observations demonstrate ERK and Akt activation induced by Dyrk1A in the brain of hyperhomocysteinemic mice and open new perspectives to understand the basis of the cognitive defects in hyperhomocysteinemia