3 research outputs found
Prevalence and Antibiogram Pattern of <i>Klebsiella pneumoniae</i> in a Tertiary Care Hospital in Makkah, Saudi Arabia: An 11-Year Experience
Infectious disease is one of the greatest causes of morbidity and mortality worldwide, and with the emergence of antimicrobial resistance, the situation is worsening. In order to prevent this crisis, antimicrobial resistance needs to be monitored carefully to control the spread of multidrug-resistant bacteria. Therefore, in this study, we aimed to determine the prevalence of infection caused by Klebsiella pneumoniae and investigate the antimicrobial profile pattern of K. pneumoniae in the last eleven years. This retrospective study was conducted in a tertiary hospital in Makkah, Saudi Arabia. Data were collected from January 2011 to December 2021. From 2011 to 2021, a total of 61,027 bacterial isolates were collected from clinical samples, among which 14.7% (n = 9014) were K. pneumoniae. The antibiotic susceptibility pattern of K. pneumoniae revealed a significant increase in the resistance rate in most tested antibiotics during the study period. A marked jump in the resistance rate was seen in amoxicillin/clavulanate and piperacillin/tazobactam, from 33.6% and 13.6% in 2011 to 71.4% and 84.9% in 2021, respectively. Ceftazidime, cefotaxime, and cefepime resistance rates increased from 29.9%, 26.2%, and 53.9%, respectively, in 2011 to become 84.9%, 85.1%, and 85.8% in 2021. Moreover, a significant increase in the resistance rate was seen in both imipenem and amikacin, with an average resistance rate rise from 6.6% for imipenem and 11.9% for amikacin in 2011 to 59.9% and 62.2% in 2021, respectively. The present study showed that the prevalence and drug resistance of K. pneumoniae increased over the study period. Thus, preventing hospital-acquired infection and the reasonable use of antibiotics must be implemented to control and reduce antimicrobial resistance
Isolation and detection of drug-resistant bacterial pathogens in postoperative wound infections at a tertiary care hospital in Saudi Arabia
Background: Surgical site infections (SSIs), especially when caused by multidrug-resistant (MDR) bacteria, are a major healthcare concern worldwide. For optimal treatment and prevention of antimicrobial resistance, it is important for clinicians to be aware of local drug-resistant bacterial pathogens that cause SSIs.
Objective: To determine the frequency patterns of drug-resistant bacterial strains causing SSIs at a tertiary care hospital in Saudi Arabia.
Methods: This retrospective study was conducted at the Microbiology laboratory of Al-Noor Specialist Hospital, Makkah, Saudi Arabia, and included wound swab samples from all cases of SSI between January 01, 2017, and December 31, 2021. The swabs were processed for the identification of bacterial strains and their resistance pattern to antibiotics according to the Clinical and Laboratory Standards Institute.
Results: A total of 5409 wound swabs were analyzed, of which 3604 samples (66.6%) were from male. Most samples were from the Department of Surgery (43.3%). A total of 14 bacterial strains were isolated, of which 9 were Gram-negative bacteria. The most common isolates were Klebsiella pneumoniae, followed by Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and vancomycin-resistant S. aureus (VRSA). In terms of MDR in 2021, the highest rate of carbapenem-resistance was in A. baumannii (97%). MDR was as follows: A. baumannii, 97%; K. pneumoniae, 81%; E. coli, 71%; MRSA, 60%; P. aeruginosa, 33%; VRE, 22%; and VRSA, 2%.
Conclusion: This study showed that in the city of Makkah, Saudi Arabia, the rates of MDR bacteria are high, with the majority being Gram-negative
Comparative Assessment of Antimicrobial Efficacy of Seven Surface Disinfectants against Eight Bacterial Strains in Saudi Arabia: An In Vitro Study
Environmental conditions in hospitals facilitate the growth and spread of pathogenic bacteria on surfaces such as floors, bed rails, air ventilation units, and mobile elements. These pathogens may be eliminated with proper disinfecting processes, including the use of appropriate surface disinfectants. In this study, we aimed to evaluate of the antibacterial effects of seven surface disinfectants (HAMAYA, DAC, AJAX, Jif, Mr. MUSCLE, CLOROX, and BACTIL) against eight bacterial strains Klebsiella pneumoniae, Enterobacter aerogenes, Acinetobacter baumannii, Serratia marcescens, Escherichia coli, vancomycin-resistant Enterococcus faecalis-ATCC 51299, methicillin-resistant Staphylococcus aureus-ATCC 43300, and Pseudomonas aeruginosa-ATCC 1544, using two methods. The first was to determine the effective contact time of disinfectant against the tested bacterial strains, and the second was an assessment of the disinfection efficacy of each disinfectant on six types of contaminated surfaces with on a mixture of the eight tested bacterial strains. The results showed the efficacy of the disinfectants against the tested strains depending on the effective contact time. BACTIL disinfectant showed an efficacy of 100% against all tested strains at the end of the first minute of contact time. HAMAYA, DAC, Jif, Mr. MUSCLE, and CLOROX showed 100% efficiency at the end of the fourth, fifth, sixth, seventh, and fourteenth minutes, respectively, while AJAX disinfectant required nineteen minutes of contact time to show 100% efficacy against all tested strains