3 research outputs found

    Image hiding in audio file using chaotic method

    Get PDF
    In this paper, we propose an efficient image hiding method that combines image encryption and chaotic mapping to introduce adaptive data hiding for improving the security and robustness of image data hiding in cover audio. The feasibility of using chaotic maps to hide encrypted image in the high frequency band of the audio is investigated. The proposed method was based on hiding the image data in the noisiest part of the audio, which is the high frequency band that was extracted by the zero crossing filter. Six types of digital images were used, each of size fit the length of used audio, this to facilitate the process of hiding them among the audio samples. The input image was encrypted by a one-time pad method, then its bits were hidden in the audio by the chaotic map. The process of retrieving the image from the audio was in the opposite way, where the image data was extracted from the high frequency band of the audio file, and then the extracted image was decrypted to produce the retrieved image. Four qualitative metrics were used to evaluate the hiding method in two paths: the first depends on comparing the retrieved image with the original image, while the second depends on comparing the audio containing the image data with the original audio once, and another time by comparing the cover audio with the original audio. The results of the quality metrics proved the efficiency of the proposed method, and it showed a slight and unnoticed effect between the research materials, which indicates the success of the hiding process and the validity of the research path

    K-Means clustering of optimized wireless network sensor using genetic algorithm

    Get PDF
    Wireless sensor network is one of the main technology trends that used in several different applications for collecting, processing, and distributing a vast range of data. It becomes an essential core technology for many applications related to sense surrounding environment. In this paper, a two-dimensional WSN scheme was utilized for obtaining various WSN models that intended to be optimized by genetic algorithm for achieving optimized WSN models. Such optimized WSN models might contain two cluster heads that are close to each other, in which the distance between them included in the sensing range, and this demonstrates the presence of a redundant number of cluster heads. This problem exceeded by reapplying the clustering of all sensors found in the WSN model. The distance measure was used to detect handled problem, while K-means clustering was used to redistributing sensors around the alternative cluster head. The result was extremely encouraging in rearranging the dispersion of sensors in the detecting region with a conservative method of modest number of cluster heads that acknowledge the association for all sensors nearby

    Wireless Sensor Network Optimization Using Genetic Algorithm

    Get PDF
    Wireless Sensor Network (WSN) is a high potential technology used in many fields (agriculture, earth, environmental monitoring, resources union, health, security, military, and transport, IoT technology). The band width of each cluster head is specific, thus, the number of sensors connected to each cluster head is restricted to a maximum limit and exceeding it will weaken the connection service between each sensor and its corresponding cluster head. This will achieve the research objective which refers to reaching the state where the proposed system energy is stable and not consuming further more cost. The main challenge is how to distribute the cluster heads regularly on a specified area, that’s why a solution was supposed in this research implies finding the best distribution of the cluster heads using a genetic algorithm. Where using an optimization algorithm, keeping in mind the cluster heads positions restrictions, is an important scientific contribution in the research field of interest. The novel idea in this paper is the crossover of two-dimensional integer encoded individuals that replacing an opposite region in the parents to produce the children of new generation. The mutation occurs with probability of 0.001, it changes the type of 0.05 sensors found in handled individual. After producing more than 1000 generations, the achieved results showed lower value of fitness function with stable behavior. This indicates the correct path of computations and the accuracy of the obtained results. The genetic algorithm operated well and directed the process towards improving the genes to be the best possible at the last generation. The behavior of the objective function started to be regular gradually throughout the produced generations until reaching the best product in the last generation where it is shown that all the sensors are connected to the nearest cluster head. As a conclusion, the genetic algorithm developed the sensors’ distribution in the WSN model, which confirms the validity of applying of genetic algorithms and the accuracy of the results
    corecore