19 research outputs found

    Cosmic Acceleration With A Positive Cosmological Constant

    Full text link
    We have considered a cosmological model with a phenomenological model for the cosmological constant of the form \Lambda=\bt\fr{\ddot R}{R}, \bt is a constant. For age parameter consistent with observational data the Universe must be accelerating in the presence of a positive cosmological constant. The minimum age of the Universe is H01H_0^{-1}, where H0H_0 is the present Hubble constant. The cosmological constant is found to decrease as t2t^{-2}. Allowing the gravitational constant to change with time leads to an ever increasing gravitational constant at the present epoch. In the presence of a viscous fluid this decay law for Λ\Lambda is equivalent to the one with Λ=3αH2\Lambda=3\alpha H^2 (α=const.\alpha=\rm const.) provided \alpha=\fr{\bt}{3(\bt-2)}. The inflationary solution obtained from this model is that of the de-Sitter type.Comment: a more revised versio

    A study of the angular size-redshift relation for models in which Λ\Lambda decays as the energy density

    Full text link
    By modifying the Chen and Wu ansatz, we have investigated some Friedmann models in which Λ\Lambda varies as ρ\rho. In order to test the consistency of the models with observations, we study the angular size - redshift relation for 256 ultracompact radio sources selected by Jackson and Dodgson. The angular sizes of these sources were determined by using very long-baseline interferometry in order to avoid any evolutionary effects. The models fit the data very well and require an accelerating universe with a positive cosmological constant. Open, flat and closed models are almost equally probable, though the open model provides a comparatively better fit to the data. The models are found to have intermediate density and imply the existence of dark matter, though not as much as in the canonical Einstein-de Sitter model.Comment: LaTex, 15 pages including 2 figures (Revised version appeared in CQG

    Generation of Bianchi type V cosmological models with varying Λ\Lambda-term

    Full text link
    Bianchi type V perfect fluid cosmological models are investigated with cosmological term Λ\Lambda varying with time. Using a generation technique (Camci {\it et al.}, 2001), it is shown that the Einstein's field equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. The cosmological constant is found to be decreasing function of time, which is supported by results from recent type Ia supernovae observations. Some physical aspects of the models are also discussed.Comment: 16 pages, 3 figures, submitted to CJ

    Bianchi Type V Viscous Fluid Cosmological Models in Presence of Decaying Vacuum Energy

    Full text link
    Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ\Lambda is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter HH in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.Comment: 10 pages, 3 figure

    Five Dimensional Cosmological Models in General Relativity

    Full text link
    A Five dimensional Kaluza-Klein space-time is considered in the presence of a perfect fluid source with variable G and Λ\Lambda. An expanding universe is found by using a relation between the metric potential and an equation of state. The gravitational constant is found to decrease with time as Gt(1ω)G \sim t^{-(1-\omega)} whereas the variation for the cosmological constant follows as Λt2\Lambda \sim t^{-2}, Λ(R˙/R)2\Lambda \sim (\dot R/R)^2 and ΛR¨/R\Lambda \sim \ddot R/R where ω\omega is the equation of state parameter and RR is the scale factor.Comment: 13 pages, 4 figures, accepted in Int. J. Theor. Phy

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (ξ=ξ0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur

    FRW Cosmology with Variable G and Lambda

    Full text link
    We have considered a cosmological model of the FRW universe with variable GG and Λ\Lambda. The solutions have been obtained for flat model with particular form of cosmological constant. The cosmological parameters have also been obtained for dust, radiation and stiff matter. The statefinder parameters are analyzed and have shown that these depends only on ww and ϵ\epsilon. Further the lookback time, proper distance, luminosity distance and angular diameter distance have also been calculated for our model.Comment: 14 pages, 4 figure

    Higher Dimensional Cosmological Implications Of A Decay Law For Λ\Lambda Term : Expressions For Some Observable Quantities

    Full text link
    Implications of cosmological model with a cosmological term of the form Λ=βa¨a\Lambda = \beta \frac{\ddot {a}}{a}, where β\beta is a constant, are analyzed in multidimensional space time. The proper distance, the luminosity distance-redshift, the angular diameter distance-redshift, and look back time-redshift for the model are presented. It has been shown that such models are found to be compatible with the recent observations. This work has thus generalized to higher dimensions the well-know result in four dimensional space time. It is found that there may be significant difference in principle at least,from the analogous situation in four dimensional space time.Comment: 11 pages, no figur

    On Cyclic Autocorrelation and the Walsh-Hadamard Transform

    No full text
    corecore