4 research outputs found

    T-Cell Receptor Beta Variable Gene Polymorphism Predicts Immune-Related adverse Events During Checkpoint Blockade Immunotherapy

    Get PDF
    BACKGROUND: Immune checkpoint inhibitors have revolutionized cancer treatment. However, they are associated with a unique spectrum of side effects, called immune-related adverse events (irAEs), which can cause significant morbidity and quickly progress to severe or life-threatening events if not treated promptly. Identifying predictive biomarkers for irAEs before immunotherapy initiation is therefore a critical area of research. Polymorphisms within the T-cell receptor beta (TCRB) variable (TRBV) gene have been implicated in autoimmune disease and may be mechanistically linked to irAEs. However, the repetitive nature of the TCRB locus and incomplete genome assembly has hampered the evaluation of TRBV polymorphisms in the past. PATIENTS AND METHODS: We used a novel method for long-amplicon next generation sequencing of rearranged TCRB chains from peripheral blood total RNA to evaluate the link between TRBV polymorphisms and irAEs in patients treated with immunotherapy for cancer. We employed multiplex PCR to create amplicons spanning the three beta chain complementarity-determining regions (CDR) regions to enable detection of polymorphism within the germline-encoded framework and CDR1 and CDR2 regions in addition to CDR3 profiling. Resultant amplicons were sequenced via the Ion torrent and TRBV allele profiles constructed for each individual was correlated with irAE annotations to identify haplotypes associated with severe irAEs (≥ grade 3). RESULTS: Our study included 81 patients who had irAEs when treated with immunotherapy for cancer. By using principal component analysis of the 81 TRBV allele profiles followed by k-means clustering, we identified six major TRBV haplotypes. Strikingly, we found that one-third of this cohort possessed a TRBV allele haplotype that appeared to be protective against severe irAEs. CONCLUSION: The data suggest that long-amplicon TCRB repertoire sequencing can potentially identify TRBV haplotype groups that correlate with the risk of severe irAEs. Germline-encoded TRBV polymorphisms may serve as a predictive biomarker of severe irAEs

    Cardiotoxicity of FDA-approved immune checkpoint inhibitors: A rare but serious adverse event

    No full text
    Refractory cancer represents a challenge for oncologists in providing treatment options without excessive toxicity and has led to the investigation of immune mechanisms. Immune checkpoint inhibitors (ICIs) directly interfere with the tumor cells' ability to evade the innate and adaptive immune system by targeting specific proteins such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed cell death protein-ligand 1 (PD-L1), which are involved as negative regulators of T-cell function. Their growing success has led to the investigation for frontline treatment in several types of cancers. Even though these ICIs have demonstrated efficacy in the treatment of a variety of cancers, their use has been associated with the development of rare but severe adverse events. These events are the result of targeting specific checkpoint proteins on normal cells of the body as well as secondary downstream off-target effects on normal tissue. Similar to combined conventional cancer treatment, treating with combined ICIs are also associated with a higher risk of adverse events. Although cardiotoxicities related to immunotherapy are reportedly rare, they can be severe and associated with life-threatening conditions such as fulminant heart failure, hemodynamic instability, and cardiac arrest. Oncologists must carefully weigh the risk versus the therapeutic benefit of these agents in determining the best option for improving overall survival and minimizing morbidity and mortality of their patients. Our review focuses on the approved ICIs, their mechanism of action, their oncologic efficacy, and the associated potential for cardiovascular toxicity

    Evaluating the psychometric properties of the Immunotherapy module of the MD Anderson Symptom Inventory

    No full text
    Introduction Immunotherapies have revolutionized the treatment of various cancers, but little is known about their symptomatic toxicity. Assessing these symptoms is best accomplished by asking the patients themselves. However, such reports are subjective and may face challenges as bonafide scientific data. Demonstrating the validity of symptom assessment tools, mainly through the reduction of measurement errors, has the potential to improve patient care if these tools are widely adopted. To that end, we present herein the psychometric properties of the Immunotherapy for Early-Phase Trials module of the MD Anderson Symptom Inventory (MDASI-Immunotherapy EPT) in patients receiving various immunotherapies in early phase trials at a major cancer center.Methods One hundred forty-five patients completed the inventory at baseline, with 85 of them also doing so after 9 weeks of treatment. The mean (±SD) age of the patients was 57.0±12.9 years. Also, 56% of the patients were women, 79% identified as white, and 49% had at least some college education.Results The internal consistency reliability of the MDASI-Immunotherapy EPT was excellent, as the Cronbach’s alphas for all of its subscales were at least 0.88 (range 0.88–0.95). Known-group validity based on Eastern Cooperative Oncology Group performance status groupings was excellent at 9 weeks after the start of an immunotherapy trial for the MDASI-Immunotherapy EPT severity (effect size, 0.96) and interference (effect size, 0.82) subscales. We found substantial changes in the symptom items difficulty remembering (effect size, −0.85), fever and/or chills (effect size, −0.63), disturbed sleep (effect size, −0.52), diarrhea (effect size, −0.42), and swelling of hands, legs, or feet (effect size, −0.39).Conclusions In conclusion, the MDASI-Immunotherapy EPT is a valid, reliable, and sensitive tool for measuring symptomatic toxicity

    T-cell receptor beta variable gene polymorphism predicts immune-related adverse events during checkpoint blockade immunotherapy

    No full text
    Background Immune checkpoint inhibitors have revolutionized cancer treatment. However, they are associated with a unique spectrum of side effects, called immune-related adverse events (irAEs), which can cause significant morbidity and quickly progress to severe or life-threatening events if not treated promptly. Identifying predictive biomarkers for irAEs before immunotherapy initiation is therefore a critical area of research. Polymorphisms within the T-cell receptor beta (TCRB) variable (TRBV) gene have been implicated in autoimmune disease and may be mechanistically linked to irAEs. However, the repetitive nature of the TCRB locus and incomplete genome assembly has hampered the evaluation of TRBV polymorphisms in the past.Patients and methods We used a novel method for long-amplicon next generation sequencing of rearranged TCRB chains from peripheral blood total RNA to evaluate the link between TRBV polymorphisms and irAEs in patients treated with immunotherapy for cancer. We employed multiplex PCR to create amplicons spanning the three beta chain complementarity-determining regions (CDR) regions to enable detection of polymorphism within the germline-encoded framework and CDR1 and CDR2 regions in addition to CDR3 profiling. Resultant amplicons were sequenced via the Ion Torrent and TRBV allele profiles constructed for each individual was correlated with irAE annotations to identify haplotypes associated with severe irAEs (≥ grade 3).Results Our study included 81 patients who had irAEs when treated with immunotherapy for cancer. By using principal component analysis of the 81 TRBV allele profiles followed by k-means clustering, we identified six major TRBV haplotypes. Strikingly, we found that one-third of this cohort possessed a TRBV allele haplotype that appeared to be protective against severe irAEs.Conclusion The data suggest that long-amplicon TCRB repertoire sequencing can potentially identify TRBV haplotype groups that correlate with the risk of severe irAEs. Germline-encoded TRBV polymorphisms may serve as a predictive biomarker of severe irAEs
    corecore