6 research outputs found

    Modeling and Performance Analysis of Manufacturing Systems Using Max-Plus Algebra

    Get PDF
    In response to increased competition, manufacturing systems are becoming more complex in order to provide the flexibility and responsiveness required by the market. The increased complexity requires decision support tools that can provide insight into the effect of system changes on performance in an efficient and timely manner. Max-Plus algebra is a mathematical tool that can model manufacturing systems in linear equations similar to state-space equations used to model physical systems. These equations can be used in providing insight into the performance of systems that would otherwise require numerous time consuming simulations. This research tackles two challenges that currently hinder the applicability of the use of max-plus algebra in industry. The first problem is the difficulty of deriving the max-plus equations that model complex manufacturing systems. That challenge was overcome through developing a method for automatically generating the max-plus equations for manufacturing systems and presenting them in a form that allows analyzing and comparing any number of possible line configurations in an efficient manner; as well as giving insights into the effects of changing system parameters such as the effects of adding buffers to the system or changing buffers sizes on various system performance measures. The developed equations can also be used in the operation phase to analyze possible line improvements and line reconfigurations due to product changes. The second challenge is the absence of max-plus models for special types of manufacturing systems. For this, max-plus models were developed for the first time for modeling mixed model assembly lines (MMALs) and re-entrant manufacturing systems. The developed methods and tools are applied to case studies of actual manufacturing systems to demonstrate the effectiveness of the developed tools in providing important insight and analysis of manufacturing systems performance. While not covering all types of manufacturing systems, the models presented in this thesis represent a wide variety of systems that are structurally different and thus prove that max-plus algebra is a practical tool that can be used by engineers and managers in modeling and decision support both in the design and operation phases of manufacturing systems

    Design and Implementation of a Controller for an Electrostatic MEMS Actuator and Sensor

    Get PDF
    An analog controller has been analyzed and built for an electrostatic micro-cantilever beam. The closed loop MEMS device can be used as both actuator and sensor. As an actuator it will have the advantage of large stable travel range up to 90% of the gap. As a sensor the beam is to be driven into chaotic motion which is very sensitive changes in the system parameters. Two versions of the controller have been analyzed and implemented, one for the actuator and one for the sensor. For the actuator, preliminary experiments show good matching with the model. As for the sensor, the dynamic behavior have been studied and the best operating regions have been determined

    A Large-Stroke Electrostatic Micro-Actuator

    Get PDF
    Voltage-driven parallel-plate electrostatic actuators suffer from an operation range limit of 30% of the electrostatic gap; this has restrained their application in microelectromechanical systems. In this paper, the travel range of an electrostatic actuator made of a micro-cantilever beam above a fixed electrode is extended quasi-statically to 90% of the capacitor gap by introducing a voltage regulator (controller) circuit designed for low-frequency actuation. The voltage regulator reduces the actuator input voltage, and therefore the electrostatic force, as the beam approaches the fixed electrode so that balance is maintained between the mechanical restoring force and the electrostatic force. The low-frequency actuator also shows evidence of high-order superharmonic resonances that are observed here for the first time in electrostatic actuators

    Dynamics of a Close-Loop Controlled MEMS Resonator

    Get PDF
    The dynamics of a close-loop electrostatic MEMS resonator, proposed as a platform for ultra sensitive mass sensors, is investigated. The parameter space of the resonator actuation voltage is investigated to determine the optimal operating regions. Bifurcation diagrams of the resonator response are obtained at five different actuation voltage levels. The resonator exhibits bi-stability with two coexisting stable equilibrium points located inside a lower and an upper potential wells. Steady-state chaotic attractors develop inside each of the potential wells and around both wells. The optimal region in the parameter space for mass sensing purposes is determined. In that region, steady-state chaotic attractors develop and spend most of the time in the safe lower well while occasionally visiting the upper well. The robustness of the chaotic attractors in that region is demonstrated by studying their basins of attraction. Further, regions of large dynamic amplification are also identified in the parameter space. In these regions, the resonator can be used as an efficient long-stroke actuator

    Dynamics of a close-loop controlled MEMS resonator

    Get PDF
    The dynamics of a close-loop electrostatic MEMS resonator, proposed as a platform for ultra sensitive mass sensors, is investigated. The parameter space of the resonator actuation voltage is investigated to determine the optimal operating regions. Bifurcation diagrams of the resonator response are obtained at five different actuation voltage levels. The resonator exhibits bi-stability with two coexisting stable equilibrium points located inside a lower and an upper potential wells. Steady-state chaotic attractors develop inside each of the potential wells and around both wells. The optimal region in the parameter space for mass sensing purposes is determined. In that region, steady-state chaotic attractors develop and spend most of the time in the safe lower well while occasionally visiting the upper well. The robustness of the chaotic attractors in that region is demonstrated by studying their basins of attraction. Further, regions of large dynamic amplification are also identified in the parameter space. In these regions, the resonator can be used as an efficient long-stroke actuator

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population.The aim of this study was to inform vaccination prioritization by modelling the impact of vaccination on elective inpatient surgery. The study found that patients aged at least 70 years needing elective surgery should be prioritized alongside other high-risk groups during early vaccination programmes. Once vaccines are rolled out to younger populations, prioritizing surgical patients is advantageous
    corecore