2 research outputs found

    Asthma changes at a Pediatric Intensive Care Unit after 10 years: Observational study

    No full text
    Objectives: To describe the change in the management, and outcome of children with acute severe asthma (ASA) admitted to Pediatric Intensive Care Unit (PICU) at tertiary institute, as compared to previously published report in 2003. Methods : This is a retrospective observational study. All consecutive pediatric ASA patients who were admitted to PICU during the study period were included. The data were extracted from PICU database and medical records. The Cohort in this study (2013 Cohort) was compared with the Cohort of ASA, which was published in 2003 from the same institution (2003 Cohort). Results: In comparison to previous 2003 Cohort, current Cohort (2013) revealed higher mean age (5.5 vs. 3.6 years; P ≤ 0.001), higher rate of PICU admission (20.3% vs. 3.6%; P ≤ 0.007), less patients who received maintenance inhaled steroids (43.3% vs. 62.4%; P ≤ 0.03), less patients with pH <7.3 (17.9% vs. 42.9%; P ≤ 0.001). There were more patients in 2013 Cohort who received: Inhaled Ipratropium bromide (97% vs. 68%; P ≤ 0.001), intravenous magnesium sulfate (68.2% vs. none), intravenous salbutamol (13.6% vs. 3.6%; P ≤ 0.015), and noninvasive ventilation (NIV) (35.8% vs. none) while no patients were treated with theophylline (none vs. 62.5%). The median length of stay (LOS) was 2 days while mean LOS was half a day longer in the 2013 Cohort. None of our patients required intubation, and there was no mortality. Conclusion: We observed slight shift toward older age, considerably increased the rate of PICU admission, increased utilization of Ipratropium bromide, magnesium sulfate, and NIV as important modalities of treatment

    Procedural Software Toolkit in the Armamentarium of Interventional Therapies: A Review of Additive Usefulness and Current Evidence

    No full text
    Interventional radiology is a fast-paced specialty that uses many advanced and emerging technological solutions. Several procedural hardware and software products are available commercially. Image-guided procedural software helps save time and effort in interventionist practice and adds precision to the intraoperative decisions made by the end user. Interventional radiologists, including interventional oncologists, have access to a wide range of commercially available procedural software that can be integrated into their workflow. However, the resources and real-world evidence related to such software are limited. Thus, we performed a detailed review of the current resources available, such as software-related publications, vendors’ multimedia materials (e.g., user guides), and each software’s functions and features, to compile a resource for interventional therapies. We also reviewed previous studies that have verified the use of such software in angiographic suites. Procedural software products will continue to increase in number and usage; these will likely be advanced further with deep learning, artificial intelligence, and new add-ins. Therefore, classifying procedural product software can improve our understanding of these entities. This review significantly contributes to the existing literature because it highlights the lack of studies on procedural product software
    corecore