2 research outputs found

    A Resistor-Network Model of Dickson Charge Pump Using Steady-State Analysis

    No full text
    This paper presents a new average behavioral model, named a resistor-network (RN) model, that accurately predicts the electrical characteristics of the Dickson charge pump (DCP) circuit in the slow-switching limit and the fast-switching limit regions based on steady-state analysis. The RN model describes the steady-state behavior of a single-stage DCP using a network of resistors, which can then be cascaded to model N-stage DCP, taking into account the top- and bottom-plate parasitic capacitances. The RN model provides a comprehensive insight into various design parameters of the DCP, including the input/output current, output voltage, load characteristics, losses caused by parasitics, and power efficiency. Simulation results show that the proposed RN model accurately predicts the output voltage and power efficiency of the DCP over a wide range of switching frequencies, from 0.1 Hz to 1 GHz, with an error of less than 2% at the maximum power efficiency. The RN model provides designers with a simple and effective model to design DCP quickly and efficiently for a broad spectrum of applications, including energy harvesting and flash memory applications

    A Resistor-Network Model of Dickson Charge Pump Using Steady-State Analysis

    No full text
    This paper presents a new average behavioral model, named a resistor-network (RN) model, that accurately predicts the electrical characteristics of the Dickson charge pump (DCP) circuit in the slow-switching limit and the fast-switching limit regions based on steady-state analysis. The RN model describes the steady-state behavior of a single-stage DCP using a network of resistors, which can then be cascaded to model N-stage DCP, taking into account the top- and bottom-plate parasitic capacitances. The RN model provides a comprehensive insight into various design parameters of the DCP, including the input/output current, output voltage, load characteristics, losses caused by parasitics, and power efficiency. Simulation results show that the proposed RN model accurately predicts the output voltage and power efficiency of the DCP over a wide range of switching frequencies, from 0.1 Hz to 1 GHz, with an error of less than 2% at the maximum power efficiency. The RN model provides designers with a simple and effective model to design DCP quickly and efficiently for a broad spectrum of applications, including energy harvesting and flash memory applications
    corecore