39 research outputs found

    Grupiranje zasnovano na skupljanju dokaza s vjerojatnosno-neizrazitim C-means pristupom za dijagnozu bolesti

    Get PDF
    Traditionally, supervised machine learning methods are the first choice for tasks involving classification of data. This study provides a non-conventional hybrid alternative technique (pEAC) that blends the Possibilistic Fuzzy C-Means (PFCM) as base cluster generating algorithm into the ‘standard’ Evidence Accumulation Clustering (EAC) clustering method. The PFCM coalesces the separate properties of the Possibilistic C-Means (PCM) and Fuzzy C-Means (FCM) algorithms into a sophisticated clustering algorithm. Notwithstanding the tremendous capabilities offered by this hybrid technique, in terms of structure, it resembles the hEAC and fEAC ensemble clustering techniques that are realised by integrating the K-Means and FCM clustering algorithms into the EAC technique. To validate the new technique’s effectiveness, its performance on both synthetic and real medical datasets was evaluated alongside individual runs of well-known clustering methods, other unsupervised ensemble clustering techniques and some supervised machine learning methods. Our results show that the proposed pEAC technique outperformed the individual runs of the clustering methods and other unsupervised ensemble techniques in terms accuracy for the diagnosis of hepatitis, cardiovascular, breast cancer, and diabetes ailments that were used in the experiments. Remarkably, compared alongside selected supervised machine learning classification models, our proposed pEAC ensemble technique exhibits better diagnosing accuracy for the two breast cancer datasets that were used, which suggests that even at the cost of none labelling of data, the proposed technique offers efficient medical data classification.Tradicionalno, metode nadziranog strojnog učenja predstavljaju prvi izbor za zadatke koji uključuju klasifikaciju podataka. Ovo istraživanje prikazuje nekonvencionalnu hibridnu alternativnu (pEAC) tehniku koja kombinira vjerojatnosno-neizraziti C-Means (PFCM) kao osnovni algoritam grupiranja u standardno grupiranje korištenjem grupiranja zasnovanog na skupljanju dokaza (EAC). PFCM objedinjuje zasebna svojstva vjerojatnosnog C-Means (PCM) i neizrazitog C-Means (FCM) algoritama u sofisticirani algoritam grupiranja. Usprkos ogromnim mogućnostima koje nudi ova tehnika, u smislu strukture, ona je nalik cjelovitim hEAC i fEAC tehnikama grupiranja realiziranim integracijom K-Means i FCM algoritama grupiranja u EAC tehniku.Kako bi se validirala učinkovitost, njeno ponašanje je ispitano na sintetičkim i stvarnim medicinskim podacima te su provedene usporedbe s pojedinačnim široko rasprostranjenim metodama, drugim nenadziranim tehnikama grupiranja i nekim nadziranim metodama učenja. Rezultat prikazuje kako predložena pEAC tehnika nadmašuje pojedine metode grupiranja i druge tehnike nenadziranog učenja u smislu točnosti u dijagnozi hepatitisa, kadiovaskularnih bolesti, raka dojke i dijabetesa, korištenih u eksperimentu.Značajno, u usporedbi s odabranim nadziranim modelima klasifikacije, predložena pEAC tehnika pokazuje bolju točnost dijagnoze na dvama korištenim bazama podataka za rak dojke, što ukazuje na to da čak i bez označenih podataka predložena tehnika nudi efikasnu klasifikaciju medicinskih podataka

    A Multitier Deep Learning Model for Arrhythmia Detection

    Get PDF
    Electrocardiograph (ECG) is employed as a primary tool for diagnosing cardiovascular diseases (CVD) in the hospital, which often helps in the early detection of such ailments. ECG signals provide a framework to probe the underlying properties and enhance the initial diagnosis obtained via traditional tools and patient-doctor dialogues. It provides cardiologists with inferences regarding more serious cases. Notwithstanding its proven utility, deciphering large datasets to determine appropriate information remains a challenge in ECG-based CVD diagnosis and treatment. Our study presents a deep neural network (DNN) strategy to ameliorate the aforementioned difficulties. Our strategy consists of a learning stage where classification accuracy is improved via a robust feature extraction. This is followed using a genetic algorithm (GA) process to aggregate the best combination of feature extraction and classification. The MIT-BIH Arrhythmia was employed in the validation to identify five arrhythmia categories based on the association for the advancement of medical instrumentation (AAMI) standard. The performance of the proposed technique alongside state-of-the-art in the area shows an increase of 0.94 and 0.953 in terms of average accuracy and F1 score, respectively. The proposed model could serve as an analytic module to alert users and/or medical experts when anomalies are detected in the acquired ECG data in a smart healthcare framework

    Efficient Multimodal Deep-Learning-Based COVID-19 Diagnostic System for Noisy and Corrupted Images

    Get PDF
    Introduction: In humanity\u27s ongoing fight against its common enemy of COVID-19, researchers have been relentless in finding efficient technologies to support mitigation, diagnosis, management, contact tracing, and ultimately vaccination. Objectives: Engineers and computer scientists have deployed the potent properties of deep learning models (DLMs) in COVID-19 detection and diagnosis. However, publicly available datasets are often adulterated during collation, transmission, or storage. Meanwhile, inadequate, and corrupted data are known to impact the learnability and efficiency of DLMs. Methods: This study focuses on enhancing previous efforts via two multimodal diagnostic systems to extract required features for COVID-19 detection using adulterated chest X-ray images. Our proposed DLM consists of a hierarchy of convolutional and pooling layers that are combined to support efficient COVID-19 detection using chest X-ray images. Additionally, a batch normalization layer is used to curtail overfitting that usually arises from the convolution and pooling (CP) layers. Results: In addition to matching the performance of standard techniques reported in the literature, our proposed diagnostic systems attain an average accuracy of 98% in the detection of normal, COVID-19, and viral pneumonia cases using corrupted and noisy images. Conclusions: Such robustness is crucial for real-world applications where data is usually unavailable, corrupted, or adulterated

    A Multitier Deep Learning Model for Arrhythmia Detection

    Get PDF
    An electrocardiograph (ECG) is employed as a primary tool for diagnosing cardiovascular diseases (CVDs). ECG signals provide a framework to probe the underlying properties and enhance the initial diagnosis obtained via traditional tools and patient-doctor dialogs. Notwithstanding its proven utility, deciphering large data sets to determine appropriate information remains a challenge in ECG-based CVD diagnosis and treatment. Our study presents a deep neural network (DNN) strategy to ameliorate the aforementioned difficulties. Our strategy consists of a learning stage where classification accuracy is improved via a robust feature extraction protocol. This is followed by using a genetic algorithm (GA) process to aggregate the best combination of feature extraction and classification. Comparison of the performance recorded for the proposed technique alongside state-of-the-art methods reported the area shows an increase of 0.94 and 0.953 in terms of average accuracy and F1 score, respectively. The outcomes suggest that the proposed model could serve as an analytic module to alert users and/or medical experts when anomalies are detected

    Deep Learning Modalities for Biometric Alteration Detection in 5G Networks-Based Secure Smart Cities

    Get PDF
    Smart cities and their applications have become attractive research fields birthing numerous technologies. Fifth generation (5G) networks are important components of smart cities, where intelligent access control is deployed for identity authentication, online banking, and cyber security. To assure secure transactions and to protect user’s identities against cybersecurity threats, strong authentication techniques should be used. The prevalence of biometrics, such as fingerprints, in authentication and identification makes the need to safeguard them important across different areas of smart applications. Our study presents a system to detect alterations to biometric modalities to discriminate pristine, adulterated, and fake biometrics in 5G-based smart cities. Specifically, we use deep learning models based on convolutional neural networks (CNN) and a hybrid model that combines CNN with convolutional long-short term memory (ConvLSTM) to compute a three-tier probability that a biometric has been tempered. Simulation-based experiments indicate that the alteration detection accuracy matches those recorded in advanced methods with superior performance in terms of detecting central rotation alteration to fingerprints. This makes the proposed system a veritable solution for different biometric authentication applications in secure smart cities

    SPARC 2016 Salford postgraduate annual research conference book of abstracts

    Get PDF

    Intelligent Measurement of Void Fractions in Homogeneous Regime of Two Phase Flows Independent of the Liquid Phase Density Changes

    No full text
    Determining the amount of void fraction of multiphase flows in pipelines of the oil, chemical and petrochemical industries is one of the most important challenges. Performance of capacitance based two phase flow meters highly depends on the fluid properties. Fluctuation of the liquid phase properties such as density, due to temperature and pressure changes, would cause massive errors in determination of the void fraction. A common approach to fix this problem is periodic recalibration of the system, which is a tedious task. The aim of this study is proposing a method based on artificial intelligence (AI), which offers the advantage of intelligent measuring of the void fraction regardless of the liquid phase changes without the need for recalibration. To train AI, a data set for different liquid phases is required. Although it is possible to obtain the required data from experiments, it is time-consuming and also incorporates its own specific safety laboratory consideration, particularly working with flammable liquids such as gasoline, oil and gasoil. So, COMSOL Multiphysics software was used to model a homogenous regime of two-phase flow with five different liquid phases and void fractions. To validate the simulation geometry, initially an experimental setup including a concave sensor to measure the capacitance by LCR meter for the case that water used as the liquid phase, was established. After validation of the simulated geometry for concave sensor, a ring sensor was also simulated to investigate the best sensor type. It was found that the concave type has a better sensitivity. Therefore, the concave type was used to measure the capacitance for different liquid phases and void fractions inside the pipe. Finally, simulated data were used to train a Multi-Layer Perceptron (MLP) neural network model in MATLAB software. The trained MLP model was able to predict the void fraction independent of the liquid phase density changes with a Mean Absolute Error (MAE) of 1.74
    corecore