26 research outputs found
Wheat in the Era of Genomics and Transgenics
Wheat, as one of the most important cereal crops in the world and second major caloric source in the world after rice, is the major staple food in South Asia and many other countries of the world. Prior to onset of âGreen Revolution,â South Asian countries were facing the threat of severe famine. Green Revolution wheat genotypes brought out these countries from the crisis they were facing and has helped them to sustain their productions for more than half a century. With the emergence of molecular biology and biotechnology, another window of opportunity is opened to sustain wheat yields by using modern techniques of genes identification and utilization. Through this chapter, we have tried to gather information that was generated for wheat improvement in last 3 decades. These afforest included the development of molecular markers, mapping of genes, sequencing of markers genes, and their utilization through marker-assisted selection. The other part recorded various efforts to genetically transform wheat for traits improvements and/or to study their molecular control
Alleviation of banded leaf and sheath blight disease incidence in maize by bacterial volatile organic compounds and molecular docking of targeted inhibitors in Rhizoctonia solani
Rhizoctonia solani (RS) is a pathogenic fungus that affects maize (Zea mays L.) plants and causes banded leaf and sheath blight (BLSB) with severe consequences leading to significant economic losses. Contrarily, rhizobacteria produce numerous volatile organic compounds (VOCs) that help in devising the environment-friendly mechanism for promoting plant growth and stress alleviation without having physical contact with plants. In the present study, 15 rhizobacterial strains were tested for their antagonism against RS. The antagonistic potential of VOCs of the tested plant growth-promoting rhizobacteria (PGPR) strains ranged from 50% to 80% as compared to the control (without PGPR). Among these 15 strains, the maximum (80%) antagonistic activity was exhibited by Pseudomonas pseudoalcaligenes SRM-16. Thus, the potential of VOCs produced by P. pseudoalcaligenes SRM-16 to alleviate the BLSB disease in maize was evaluated. A pot experiment was conducted under greenhouse conditions to observe the effect of VOCs on disease resistance of BLSB-infected seedlings. Overall, maize seedlings exposed to VOCs showed a significant increase in disease resistance as indicated by a reduced disease score than that of unexposed infected plants. The VOCs-exposed maize exhibited lower (11.6%) disease incidence compared to the non-inoculated maize (14.1%). Moreover, plants exposed to VOCs displayed visible improvements in biomass, photosynthetic pigments, osmoregulation, and plant antioxidant and defense enzyme activities compared to the healthy but unexposed seedlings. Simultaneous application of RS and VOCs enhanced superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), phenylalanine ammonia lyase (PAL), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) activities by 96.7%, 266.6%, 313.7%, 246.6%, 307%, and 149.7%, respectively, in the roots and by 81.6%, 246.4%, 269.5%, 269.6%, 329%, and 137.6%, respectively, in the shoots, relative to those of the control plants. The binding affinity of the VOCs (2-pentylfuran, 2,3-butanediol, and dimethyl disulfide) with CRZ1 and S9 protein receptors of RS was assessed by deploying in silico methods. Overall, 2-pentylfuran exhibited a binding affinity with both the selected receptors of RS, while 2,3-butanediol and dimethyl disulfide were able to bind S9 protein only. Hence, it can be deduced that S9 protein receptors are more likely the target RS receptors of bacterial VOCs to inhibit the proliferation of RS
Pediatric Dermatology In Family Medicine: Common Conditions And Management Strategies
Among the most prevalent disorders are those related to the skin. However, in medical education and training, this class of illnesses is frequently disregarded. The first line of defence for the treatment of common dermatological diseases is a family physician. The purpose of our study was to evaluate the particular identification, management, encountering, and referral practices related to dermatological illnesses in family care. We also looked into the challenges and opportunities that family doctors experience in family medicine and saw a few of the paediatric dermatological diseases that family doctors may encounter. Finding areas of weakness in the clinical therapy of certain dermatological disorders, however, will be aided by assessing how family doctors treat particular ailments. Thus, this needs assessment might serve as a foundation for future research on the efficacy of family medicine in treating common paediatric dermatological problems as well as aid in the development of evidence-based training for family physicians in the area
Clinical Correlation Between Back Pain and Osteoarthritis Among Adults: A Cross-Sectional Study
Objective: To investigate the clinical correlation between back pain and the role of osteoarthritis in the etiology of this pain. Methods: This research employs a cross-sectional study design to investigate the clinical correlation between back pain and osteoarthritis in adults. Cross-sectional studies provide a snapshot of data at a specific time, making them suitable for assessing the prevalence and potential associations between variables of interest. Results: The study included 1106 participants. The most frequent age among them was 40-50 years (n= 486, 43.9%), followed by 18-28 years (n= 340, 30.7%). The most frequent gender among study participants was female (n= 560, 50.6%) followed by male (n= 546, 49.4%). The most frequent marital status among study participants was married (n= 702, 63.5%), followed by single (n= 353, 31.9%). The most frequent job among study participants was a government job (n= 480, 43.4%), followed by a private sector job (n= 177, 16%). Duration of suffering from back pain among study participants with most of them being 1 to 5 years (n= 505, 45.7%), followed by nothing (n= 373, 33.7%), and the least was 23 years and above (n= 13, 1.2%). Participants were asked about evaluating the impact of back pain on life. For personal care, the most frequent was (currently, I do not feel any pain) (n= 514, 46.5%). The severity of pain, the most frequent, was (I can usually take care of myself and do my own things without adding to my pain) (n= 923, 83.5%). The lift and move things, the most frequent was (I can lift heavy objects without it adding to my pain) (n= 524, 47.4%). The walking, the most frequent was (The pain does not prevent me from walking any distance) (n= 801, 72.4%). The Sitting, the most frequent was (I can sit in any chair for as long as I want) (n= 661, 59.8%). The stand-up, most frequent was (I can stay standing as long as I want without increasing my pain) (n= 523, 47.3%). For sleep, the most frequent answer was (My sleep is never disturbed by pain) (n= 611, 55.2%). The Social-life, most frequent was (My social life is normal and does not cause me more pain) (n= 860, 77.8%). Conclusion: The results of the study showed that most of the participants were married and taught in government jobs. The majority of them do not suffer from severe back pain that affects their lives. In addition, most of the study participants had good and effective communicatio
Physio-anatomical modifications and elemental allocation pattern in Acanthus ilicifolius L. subjected to zinc stress.
Physio-anatomical modifications and elemental distribution pattern in Acanthus ilicifolius subjected to Zn stress were analysed in this study. Survival of A. ilicifolius plants under a high concentration of ZnSO4 was compensated by the reduction in the photosynthetic efficacy. Micro and macro-elemental distribution pattern in the root tissues was significantly influenced by heavy metal exposure. Tolerance towards the excess toxic metal ions in the tissue of A. ilicifolius was aided by the modified anatomical features. Moreover, the increased deposition of Zn around the central vasculature of the root confirms the complexation of Zn2+ in the xylem vessels. Metal induced molecular level changes of root and leaf samples indicate the presence of OH, NH2, and CH3 deformation as well as C-O-H and C-O-C stretch. A prominent band corresponding to CH3 deformation, pointing hemicellulose fortification, occurs in the cell walls of the xylem, aiding in Zn localization. The phytostabilisation potential of A. ilicifolius is dependent on the coordinated responses which endow with phenotypic plasticity necessary to cope with Zn toxicity
The Effect of LED Light Spectra on the Growth, Yield and Nutritional Value of Red and Green Lettuce (Lactuca sativa)
Controlled Environment Agriculture (CEA) is a method of increasing crop productivity per unit area of cultivated land by extending crop production into the vertical dimension and enabling year-round production. Light emitting diodes (LED) are frequently used as the source of light energy in CEA systems and light is commonly the limiting factor for production under CEA conditions. In the current study, the impact of different spectra was compared with the use of white LED light. The various spectra were white; white supplemented with ultraviolet b for a week before harvest; three combinations of red/blue lights (red 660 nm with blue 450 nm at 1:1 ratio; red 660 nm with blue 435 nm 1:1 ratio; red 660 nm with blue at mix of 450 nm and 435 nm 1:1 ratio); and red/blue supplemented with green and far red (B/R/G/FR, ratio: 1:1:0.07:0.64). The growth, yield, physiological and chemical profiles of two varieties of lettuce, Carmoli (red) and Locarno (green), responded differently to the various light treatments. However, white (control) appeared to perform the best overall. The B/R/G/FR promoted the growth and yield parameters in both varieties of lettuce but also increased the level of stem elongation (bolting), which impacted the quality of grown plants. There was no clear relationship between the various physiological parameters measured and final marketable yield in either variety. Various chemical traits, including vitamin C content, total phenol content, soluble sugar and total soluble solid contents responded differently to the light treatments, where each targeted chemical was promoted by a specific light spectrum. This highlights the importance of designing the light spectra in accordance with the intended outcomes. The current study has value in the field of commercial vertical farming of lettuce under CEA conditions
The Effect of LED Light Spectra on the Growth, Yield and Nutritional Value of Red and Green Lettuce (Lactuca sativa)
Controlled Environment Agriculture (CEA) is a method of increasing crop productivity per unit area of cultivated land by extending crop production into the vertical dimension and enabling year-round production. Light emitting diodes (LED) are frequently used as the source of light energy in CEA systems and light is commonly the limiting factor for production under CEA conditions. In the current study, the impact of different spectra was compared with the use of white LED light. The various spectra were white; white supplemented with ultraviolet b for a week before harvest; three combinations of red/blue lights (red 660 nm with blue 450 nm at 1:1 ratio; red 660 nm with blue 435 nm 1:1 ratio; red 660 nm with blue at mix of 450 nm and 435 nm 1:1 ratio); and red/blue supplemented with green and far red (B/R/G/FR, ratio: 1:1:0.07:0.64). The growth, yield, physiological and chemical profiles of two varieties of lettuce, Carmoli (red) and Locarno (green), responded differently to the various light treatments. However, white (control) appeared to perform the best overall. The B/R/G/FR promoted the growth and yield parameters in both varieties of lettuce but also increased the level of stem elongation (bolting), which impacted the quality of grown plants. There was no clear relationship between the various physiological parameters measured and final marketable yield in either variety. Various chemical traits, including vitamin C content, total phenol content, soluble sugar and total soluble solid contents responded differently to the light treatments, where each targeted chemical was promoted by a specific light spectrum. This highlights the importance of designing the light spectra in accordance with the intended outcomes. The current study has value in the field of commercial vertical farming of lettuce under CEA conditions
Selective Removal of Hexavalent Chromium from Wastewater by Rice Husk: Kinetic, Isotherm and Spectroscopic Investigation
Chromium (Cr) in water bodies is considered as a major environmental issue around the world. In the present study, aqueous Cr(VI) adsorption onto rice husk was studied as a function of various environmental parameters. Equilibrium time was achieved in 2 h and maximum Cr(VI) adsorption was 78.6% at pH 5.2 and 120 mg L−1 initial Cr(VI) concentration. In isotherm experiments, the maximum sorption was observed as 379.63 mg g−1. Among four isotherm models, Dubinin–Radushkevich and Langmuir models showed the best fitting to the adsorption data, suggesting physical and monolayer adsorption to be the dominant mechanism. The kinetic modeling showed that a pseudo-second order model was suitable to describe kinetic equilibrium data, suggesting a fast adsorption rate of Cr(VI). The results of FTIR spectroscopy indicated that mainly –OH and C–H contributed to Cr(VI) adsorption onto rice husk. This paper provided evidence that rice husk could be a cost-effective, environment-friendly and efficient adsorptive material for Cr(VI) removal from wastewater due to its high adsorption capacity
Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil
Biochar amendments are widely recognized to improve crop productivity and soil biogeochemical quality, however, their effects on vegetable crops are less studied. This pot study investigated the effects of cotton stick, corncob and rice straw biochars alone and with farmyard manure (FYM) on tomato growth, soil physicoâchemical and biological characteristics, soil organic carbon (SOC) content and amount of soil nutrients under recommended mineral fertilizer conditions in a nutrient-depleted alkaline soil. Biochars were applied at 0, 1.5 and 3% (w/w, basis) rates and FYM was added at 0 and 30 t haâ1 rates. Biochars were developed at 450 °C pyrolysis temperature and varied in total organic C, nitrogen (N), phosphorus (P) and potassium (K) contents. The results showed that biochars, their amounts and FYM significantly improved tomato growth which varied strongly among the biochar types, amounts and FYM. With FYM, the addition of 3% corncob biochar resulted in the highest total chlorophyll contents (9.55 ug gâ1), shoot (76.1 cm) and root lengths (44.7 cm), and biomass production. Biochars with and without FYM significantly increased soil pH, electrical conductivity (EC) and cation exchange capacity (CEC). The soil basal respiration increased with biochar for all biochars but not consistently after FYM addition. The water-extractable organic C (WEOC) and soil organic C (SOC) contents increased significantly with biochar amount and FYM, with the highest SOC found in the soil that received 3% corncob biochar with FYM. Microbial biomass C (MBC), N (MBN) and P (MBP) were the highest in corncob biochar treated soils followed by cotton stick and rice straw biochars. The addition of 3% biochars along with FYM also showed significant positive effects on soil mineral N, P and K contents. The addition of 3% corncob biochar with and without FYM always resulted in higher soil N, P and K contents at the 3% rate. The results further revealed that the positive effects of biochars on above-ground plant responses were primarily due to the improvements in below-ground soil properties, nutrientsâ availability and SOC; however, these effects varied strongly between biochar types. Our study concludes that various biochars can enhance tomato production, soil biochemical quality and SOC in nutrient poor soil under greenhouse conditions. However, we emphasize that these findings need further investigations using long-term studies before adopting biochar for sustainable vegetable production systems
Selective Removal of Hexavalent Chromium from Wastewater by Rice Husk: Kinetic, Isotherm and Spectroscopic Investigation
Chromium (Cr) in water bodies is considered as a major environmental issue around the world. In the present study, aqueous Cr(VI) adsorption onto rice husk was studied as a function of various environmental parameters. Equilibrium time was achieved in 2 h and maximum Cr(VI) adsorption was 78.6% at pH 5.2 and 120 mg Lâ1 initial Cr(VI) concentration. In isotherm experiments, the maximum sorption was observed as 379.63 mg gâ1. Among four isotherm models, DubininâRadushkevich and Langmuir models showed the best fitting to the adsorption data, suggesting physical and monolayer adsorption to be the dominant mechanism. The kinetic modeling showed that a pseudo-second order model was suitable to describe kinetic equilibrium data, suggesting a fast adsorption rate of Cr(VI). The results of FTIR spectroscopy indicated that mainly âOH and CâH contributed to Cr(VI) adsorption onto rice husk. This paper provided evidence that rice husk could be a cost-effective, environment-friendly and efficient adsorptive material for Cr(VI) removal from wastewater due to its high adsorption capacity