17 research outputs found
If we build it they will come: targeting the immune response to breast cancer.
Historically, breast cancer tumors have been considered immunologically quiescent, with the majority of tumors demonstrating low lymphocyte infiltration, low mutational burden, and modest objective response rates to anti-PD-1/PD-L1 monotherapy. Tumor and immunologic profiling has shed light on potential mechanisms of immune evasion in breast cancer, as well as unique aspects of the tumor microenvironment (TME). These include elements associated with antigen processing and presentation as well as immunosuppressive elements, which may be targeted therapeutically. Examples of such therapeutic strategies include efforts to (1) expand effector T-cells, natural killer (NK) cells and immunostimulatory dendritic cells (DCs), (2) improve antigen presentation, and (3) decrease inhibitory cytokines, tumor-associated M2 macrophages, regulatory T- and B-cells and myeloid derived suppressor cells (MDSCs). The goal of these approaches is to alter the TME, thereby making breast tumors more responsive to immunotherapy. In this review, we summarize key developments in our understanding of antitumor immunity in breast cancer, as well as emerging therapeutic modalities that may leverage that understanding to overcome immunologic resistance
Recommended from our members
Phase I study of a multitargeted recombinant Ad5 PSA/MUC-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC)
Antitumor vaccines targeting tumor-associated antigens (TAAs) can generate antitumor immune response. A novel vaccine platform using adenovirus 5 (Ad5) vectors [E1-, E2b-] targeting three TAAs-prostate-specific antigen (PSA), brachyury, and MUC-1-has been developed. Both brachyury and the C-terminus of MUC-1 are overexpressed in metastatic castration-resistant prostate cancer (mCRPC) and have been shown to play an important role in resistance to chemotherapy, epithelial-mesenchymal transition, and metastasis. The transgenes for PSA, brachyury, and MUC-1 all contain epitope modifications for the expression of CD8+ T-cell enhancer agonist epitopes. We report here the first-in-human trial of this vaccine platform.
Patients with mCRPC were given concurrently three vaccines targeting PSA, brachyury, and MUC-1 at 5×10
viral particles (VP) each, subcutaneously every 3 weeks for a maximum of three doses (dose de-escalation cohort), followed by a booster vaccine every 8 weeks for 1 year (dose-expansion cohort only). The primary objective was to determine the safety and the recommended phase II dose. Immune assays and clinical responses were evaluated.
Eighteen patients with mCRPC were enrolled between July 2018 and September 2019 and received at least one vaccination. Median PSA was 25.58 ng/mL (range, 0.65-1006 ng/mL). The vaccine was tolerable and safe, and no grade >3 treatment-related adverse events or dose-limiting toxicities (DLTs) were observed. One patient had a partial response, while five patients had confirmed PSA decline and five had stable disease for >6 months. Median progression-free survival was 22 weeks (95% CI: 19.1 to 34). Seventeen (100%) of 17 patients mounted T-cell responses to at least one TAA, whereras 8 (47%) of 17 patients mounted immune responses to all three TAAs. Multifunctional T-cell responses to PSA, MUC-1, and brachyury were also detected after vaccination in the majority of the patients.
Ad5 PSA/MUC-1/brachyury vaccine is well tolerated. The primary end points were met and there were no DLTs. The recommended phase II dose is 5×10
VP. The vaccine demonstrated clinical activity, including one partial response and confirmed PSA responses in five patients. Three patients with prolonged PSA responses received palliative radiation therapy. Further research is needed to evaluate the clinical benefit and immunogenicity of this vaccine in combination with other immuno-oncology agents and/or palliative radiation therapy.
NCT03481816
Recommended from our members
Phase I Trial of a Modified Vaccinia Ankara Priming Vaccine Followed by a Fowlpox Virus Boosting Vaccine Modified to Express Brachyury and Costimulatory Molecules in Advanced Solid Tumors
Lessons Learned
Modified vaccinia Ankara-Bavarian Nordic (MVA-BN)-Brachyury followed by fowlpox virus-BN-Brachyury was well tolerated upon administration to patients with advanced cancer. Sixty-three percent of patients developed CD4+ and/or CD8+ T-cell responses to brachyury after vaccination. BN-Brachyury vaccine also induced T-cell responses against CEA and MUC1, which are cascade antigens, that is, antigens not encoded in the vaccines. Background Brachyury, a transcription factor, plays an integral role in the epithelial-mesenchymal transition, metastasis, and tumor resistance to chemotherapy. It is expressed in many tumor types, and rarely in normal tissues, making it an ideal immunologic target. Bavarian Nordic (BN)-Brachyury consists of vaccination with modified vaccinia Ankara (MVA) priming followed by fowlpox virus (FPV) boosting, each encoding transgenes for brachyury and costimulatory molecules. Methods Patients with metastatic solid tumors were treated with two monthly doses of MVA-brachyury s.c., 8 x 10(8) infectious units (IU), followed by FPV-brachyury s.c., 1 x 10(9) IU, for six monthly doses and then every 3 months for up to 2 years. The primary objective was to determine safety and tolerability. Results Eleven patients were enrolled from March 2018 to July 2018 (one patient was nonevaluable). No dose-limiting toxicities were observed. The most common treatment-related adverse event was grade 1/2 injection-site reaction observed in all patients. Best overall response was stable disease in six patients, and the 6-month progression-free survival rate was 50%. T cells against brachyury and cascade antigens CEA and MUC1 were detected in the majority of patients. Conclusion BN-Brachyury vaccine is well tolerated and induces immune responses to brachyury and cascade antigens and demonstrates some evidence of clinical benefit
Abstract OT1-08-01: A phase Ib trial of sequential combinations of BN-brachyury, entinostat, ado-trastuzumab emtansine (T-DM1) and bintrafusp alfa (M7824) in advanced stage breast cancer (BrEAsT)
Abstract
Immune checkpoint blockade (ICB) monotherapy has produced limited benefit in breast cancer (BC) with response rates (RR) ranging from 5 to 23%. Combination ICB improved RR and progression free survival (PFS) resulting in atezolizumab + nab-paclitaxel receiving FDA accelerated approval for programmed cell death ligand 1 (PD-L1) positive, triple negative breast cancers (TNBC). BC has historically been considered immunologically quiet with most having a low mutational burden, low PD-L1 expression, defective antigen presentation machinery, and immuosuppressive signals in the tumor microenvironment (TME). An approach using a combination of immuno-oncology (IO) agents including ICB, immunomodulators and vaccines may shift the TME to allow for improved antigen presentation, the release of immunostimulatory cytokines, more immunogenic cell death and increased PD-L1 expression. The transcription factor brachyury plays an important role in breast tumor plasticity. High brachyury expression is associated with treatment resistance and a worse prognosis. Entinostat is a histone deacetylase inhibitor that has activity in multiple breast cancer subtypes. Preclinical data demonstrates entinostat upregulates MHC, enhances immune-mediated lysis and upregulates PD-L1 expression through epigenetic modification. Bintrafusp alfa is a bifunctional protein composed of the extracellular domain of the TGF-βRII receptor (TGF-β“trap”) fused to a human IgG1. Preclinical data shows bintrafusp alpha treatment increases T-cell trafficking, antigen-specific CD8+ T-cell lysis and NK cell activation. Monotherapy clinical studies with these agents have produced modest results in solid tumors, including BC. Preclinical data evaluating combinations of these agents shows a reduction in in tumor size, improved antigen-specific T-cell responses, reduced regulatory T cells, increased CD8+T-cells, and increased PD-L1 expression. We propose the stepwise addition of BN-Brachyury, Bintrafusp alfa, T-DM1 and Entinostat in advanced BC. This phase Ib study will assess efficacy and safety of the regimen and has three cohorts: Cohort 1(TNBC) will receive BN-Brachyury + Bintrafusp alfa. Cohort 2 (HER2+) will receive T-DM1 + BN-Brachyury + Bintrafusp alfa +/- entinostat. After safety is established in Cohort 2, patients in Cohort 3 (HER2+) will be assigned to receive T-DM1 + BN-Brachyury + Bintrafusp alfa +/- entinostat. Responses are evaluated every 2 cycles (6 weeks). Patients in Cohorts 2 and 3 will undergo research biopsies -baseline and after 2 cycles to evaluate changes within TME. Peripheral immune responses will be evaluated at selected time points. All patients must have measurable disease and HER2+ patients must have biopsiable disease. >1 prior treatment is required. Asymptomatic or brain metastases treated > 6 weeks are allowed. Well controlled HIV, HBV or treated HCV is allowed. Exclusion criteria include symptomatic brain metastases or clinically significant bleeding (<3 months from study entry). Co-primary objectives are RR and safety. Secondary objectives include PFS and changes in tumor infiltrating lymphocytes (Cohorts 2 and 3). Exploratory analyses include changes in immune cells and cytokines in the peripheral blood. Analyses performed will be descriptive, reporting the outcome measure for each treatment arm indicated along with two-tailed 80% and 95% confidence intervals. All cohorts employ a safety assessment in the initial 6 patients and a Simon minimax 2-stage design for clinical efficacy. We plan to recruit 51 patients: 13 patients with TNBC, 38 patients with HER2+BC. This trial will open Fall 2019 at the National Institutes of Health (Bethesda, MD). For more information contact the PI, [email protected].
Citation Format: Margaret E Gatti-Mays, Claudia Palena, Sofia R Gameiro, Renee N Donahue, Caroline Jochems, Seth Steinberg, Stan Lipkowitz, Alexandra Zimmer, Deneise Francis, Julius Strauss, Houssein Abdul Sater, Lisa Cordes, Jason Redman, Fatima Karzai, Marijo Bilusic, Ravi A Madan, James L Gulley, Jeffrey Schlom. A phase Ib trial of sequential combinations of BN-brachyury, entinostat, ado-trastuzumab emtansine (T-DM1) and bintrafusp alfa (M7824) in advanced stage breast cancer (BrEAsT) [abstract]. In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(4 Suppl):Abstract nr OT1-08-01
Recommended from our members
A Phase I Trial Using a Multitargeted Recombinant Adenovirus 5 (CEA/MUC1/Brachyury)-Based Immunotherapy Vaccine Regimen in Patients with Advanced Cancer
Lessons Learned
Concurrent ETBX-011, ETBX-051, and ETBX-061 can be safely administered to patients with advanced cancer. All patients developed CD4(+) and/or CD8(+) T-cell responses after vaccination to at least one tumor-associated antigen (TAA) encoded by the vaccine; 5/6 patients (83%) developed MUC1-specific T cells, 4/6 (67%) developed CEA-specific T cells, and 3/6 (50%) developed brachyury-specific T cells. The presence of adenovirus 5-neutralizing antibodies did not prevent the generation of TAA-specific T cells. Background A novel adenovirus-based vaccine targeting three human tumor-associated antigens-CEA, MUC1, and brachyury-has demonstrated antitumor cytolytic T-cell responses in preclinical animal models of cancer. Methods This open-label, phase I trial evaluated concurrent administration of three therapeutic vaccines (ETBX-011 = CEA, ETBX-051 = MUC1, and ETBX-061 = brachyury). All three vaccines used the same modified adenovirus 5 (Ad5) vector backbone and were administered at a single dose level (DL) of 5 x 10(11) viral particles (VP) per vector. The vaccine regimen consisting of all three vaccines was given every 3 weeks for three doses then every 8 weeks for up to 1 year. Clinical and immune responses were evaluated. Results Ten patients enrolled on trial (DL1 = 6 with 4 in the DL1 expansion cohort). All treatment-related adverse events were temporary, self-limiting, grade 1/2 and included injection site reactions and flu-like symptoms. Antigen-specific T cells to MUC1, CEA, and/or brachyury were generated in all patients. There was no evidence of antigenic competition. The administration of the vaccine regimen produced stable disease as the best clinical response. Conclusion Concurrent ETBX-011, ETBX-051, and ETBX-061 can be safely administered to patients with advanced cancer. Further studies of the vaccine regimen in combination with other agents, including immune checkpoint blockade, are planned
Recommended from our members
A phase 1 open label trial of intravenous administration of MVA-BN-Brachyury vaccine in patients with advanced cancer
Abstract only
2617
Background: Brachyury is a member of the T-box family of transcription factors which is overexpressed in several tumor types and has been associated with treatment resistance, epithelial to mesenchymal transition and metastatic potential. MVA-BN-Brachyury vaccine is a vector-based therapeutic cancer vaccine which demonstrated immunogenicity and safety in previous clinical trials. Preclinical studies suggested that IV administration of vaccines can induce superior CD8 + T-cell responses as compared with SC or IM routes. This is the first-in-human study to evaluate safety and tolerability of IV administration of this vaccine. Methods: Patients with metastatic or unresectable locally advanced malignant solid tumors were treated with MVA-BN-Brachyury vaccine in a phase 1, open-label, 3+3 dose-escalation study. Eligible patients received a total of three vaccine doses intravenously Q3W at 1x10
7
(DL1), 1x10
8
(DL2), or 1x10
9
infections units (Inf.U) (DL3). Patients were admitted for 48 hours for observation after each dose and had imaging at baseline and 1 and 3 months after the last vaccine dose. Primary objective was to determine the safety and tolerability and establish the recommended phase 2 dose (RP2D). Immune assays were performed in the first 10 enrolled patients. Results: In 13 patients (10 chordoma, 1 small cell breast, 1 prostate, 1 colorectal cancer), no dose-limiting toxicities were observed. Right upper quadrant abdominal pain was the only grade 3 TRAE. All other TRAEs were grade 1 or 2; most common was cytokine release syndrome (four grade 2 and one grade 1. As of Feb 2021, 9 patients completed treatment and two planned restaging scans: 5 patients had PD (3 in DL1 and 2 in DL2), 3 had SD (2 in DL2 and 1 in DL3) and 1 had PR (DL3) as their best treatment response per RECIST 1.1. One patient with advanced sacral chordoma had significant reduction of ulcerated skin metastases after 2 doses, followed by 33% shrinkage at the end of trial. Two chordoma patients with SD reported significant pain improvement. Multifunctional Brachyury, CEA, and MUC1 specific T cells were increased after vaccination in in 60%, 67%, and 50% of patients, respectively. Conclusions: MVA-BN-Brachyury IV vaccine is safe across all tested dose levels and suggesting activity in chordoma at DL3 for which this vaccine was granted FDA orphan drug designation. Mild cytokine release syndrome (rigors, chills, fever and hypotension) has been observed in 5 patients and managed with IV fluids and steroids in 2 patients. A dose 1 x 10
9
Inf.U (DL3) was selected for RP2D based upon available safety data. Further research is pending to evaluate clinical benefit and immunogenicity. Clinical trial information: NCT04134312
Recommended from our members
First-in-human phase I/II trial of PRGN-2009 vaccine as monotherapy or with bintrafusp alfa in patients with recurrent/metastatic (R/M) human papillomavirus (HPV)-associated cancers (HPVC) and as neoadjuvant/induction therapy in locoregionally advanced (LA) HPV oropharyngeal (OP) and sinonasal (SN) squamous cell cancer (SCC)
Abstract only
TPS6092
Background: R/M HPVC (cervical, anal, oropharyngeal, etc.) are incurable by current therapies. For newly diagnosed LA HPV-OPSCC standard-of-care (SOC) is radiotherapy ± chemotherapy (C/RT) or surgery ± adjuvant C/RT, with considerable risk of relapse. Newly diagnosed LA SNSCC treatment follows the OPSCC paradigm, and detection of HPV appears to confer improved prognosis. Neoadjuvant PD-1 immune checkpoint blockade (ICB) before surgery may improve RFS and is being evaluated in a multicenter phase III clinical trial (Keynote-689). PRGN-2009 (P) is a novel gorilla adenovirus vaccine containing 35 non-HLA-restricted epitopes of HPV 16 and 18 shown to induce HPV specific responses (preclinical models). Bintrafusp alfa (BA) is a bifunctional fusion protein targeting TGF-β and PD-L1 with promising activity in HPVC. This trial will evaluate the safety and activity of P/ P + BA in patients with previously treated R/M HPVC and as neoadjuvant/induction therapy before SOC surgery or C/RT in newly diagnosed LA HPV-OPSCC and HPV-SNSCC. Methods: This is a first-in-human, investigator-initiated, single-center phase I/II trial. Pts with previously treated (incl. ICB) R/M HPVC are eligible for Phase I: P dose escalation arm (3+3 design, 6-12 patients) testing 2 dose levels (1x10
11
, 5x10
11
viral particle units, SC Q2W three times, then Q4W), and combination arm (10 patients) testing P (recommended phase 2 dose (RP2D), same schedule) + BA (1200 mg IV Q2W). Treatment (both arms) will continue until disease progression, unacceptable toxicity, decision to withdraw. Primary endpoint is safety. Secondary endpoints include ORR (RECIST 1.1), PFS, and OS. For Phase II, patients with newly diagnosed stage II/III (AJCC Cancer Staging Manual, 8th ed.) HPV-OPSCC and stage II/III/IVA/IVB HPV-SNSCC planned for SOC C/RT or surgery will be eligible for two treatment arms of 20+2 patients each (sequential): P arm and P + BA, to evaluate the treatment activity. All patients will have pre-treatment biopsy, receive two cycles of the study treatment at the NCI Clinical Center two weeks apart, followed by post-treatment biopsy and SOC treatment (at the referring institution) 4 weeks after the first study treatment. Primary endpoint is post-treatment ≥2-fold increase in tumor-infiltrating CD3+ cells. Secondary endpoints include RFS, OS. Exploratory endpoints for both arms include analyses of immune subsets, soluble factors, and HPV-specific immune responses in peripheral blood and tissue where available, and in Phase II sequencing (exome, scRNA), immune spatial profiling with multiplex immunofluorescence, and salivary HPV DNA. Clinical trial registry: NCT04432597. Clinical trial information: NCT04432597