4 research outputs found
Expression of WNT Signaling Genes in the Dorsolateral Prefrontal Cortex in Schizophrenia
Gene expression alterations in postmortem schizophrenia tissue are well-documented and are influenced by genetic, medication, and epigenetic factors. The Wingless/Integrated (WNT) signaling pathway, critical for cell growth and development, is involved in various cellular processes including neurodevelopment and synaptic plasticity. Despite its importance, WNT signaling remains understudied in schizophrenia, a disorder characterized by metabolic and bioenergetic defects in cortical regions. In this study, we examined the gene expression of 10 key WNT signaling pathway transcripts: IQGAP1, CTNNβ1, GSK3β, FOXO1, LRP6, MGEA5, TCF4, βTRC, PPP1Cβ, and DVL2 in the dorsolateral prefrontal cortex (DLPFC) using postmortem tissue from schizophrenia subjects (n = 20, 10 males, 10 females) compared to age, pH, and postmortem interval (PMI)-matched controls (n = 20, 10 males, 10 females). Employing the R-shiny application Kaleidoscope, we conducted in silico “lookup” studies from published transcriptomic datasets to examine cell- and region-level expression of these WNT genes. In addition, we investigated the impact of antipsychotics on the mRNA expression of the WNT genes of interest in rodent brain transcriptomic datasets. Our findings revealed no significant changes in region-level WNT transcript expression; however, analyses of previously published cell-level datasets indicated alterations in WNT transcript expression and antipsychotic-specific modulation of certain genes. These results suggest that WNT signaling transcripts may be variably expressed at the cellular level and influenced by antipsychotic treatment, providing novel insights into the role of WNT signaling in the pathophysiology of schizophrenia
Adenosine, Schizophrenia and Cancer: Does the Purinergic System Offer a Pathway to Treatment?
For over a century, a complex relationship between schizophrenia diagnosis and development of many cancers has been observed. Findings from epidemiological studies are mixed, with reports of increased, reduced, or no difference in cancer incidence in schizophrenia patients. However, as risk factors for cancer, including elevated smoking rates and substance abuse, are commonly associated with this patient population, it is surprising that cancer incidence is not higher. Various factors may account for the proposed reduction in cancer incidence rates including pathophysiological changes associated with disease. Perturbations of the adenosine system are hypothesized to contribute to the neurobiology of schizophrenia. Conversely, hyperfunction of the adenosine system is found in the tumor microenvironment in cancer and targeting the adenosine system therapeutically is a promising area of research in this disease. We outline the current biochemical and pharmacological evidence for hypofunction of the adenosine system in schizophrenia, and the role of increased adenosine metabolism in the tumor microenvironment. In the context of the relatively limited literature on this patient population, we discuss whether hypofunction of this system in schizophrenia, may counteract the immunosuppressive role of adenosine in the tumor microenvironment. We also highlight the importance of studies examining the adenosine system in this subset of patients for the potential insight they may offer into these complex disorders
Gene Enrichment Analysis of Astrocyte Subtypes in Psychiatric Disorders and Psychotropic Medication Datasets
Astrocytes have many important functions in the brain, but their roles in psychiatric disorders and their responses to psychotropic medications are still being elucidated. Here, we used gene enrichment analysis to assess the relationships between different astrocyte subtypes, psychiatric diseases, and psychotropic medications (antipsychotics, antidepressants and mood stabilizers). We also carried out qPCR analyses and “look-up” studies to assess the chronic effects of these drugs on astrocyte marker gene expression. Our bioinformatic analysis identified gene enrichment of different astrocyte subtypes in psychiatric disorders. The highest level of enrichment was found in schizophrenia, supporting a role for astrocytes in this disorder. We also found differential enrichment of astrocyte subtypes associated with specific biological processes, highlighting the complex responses of astrocytes under pathological conditions. Enrichment of protein phosphorylation in astrocytes and disease was confirmed by biochemical analysis. Analysis of LINCS chemical perturbagen gene signatures also found that kinase inhibitors were highly discordant with astrocyte-SCZ associated gene signatures. However, we found that common gene enrichment of different psychotropic medications and astrocyte subtypes was limited. These results were confirmed by “look-up” studies and qPCR analysis, which also reported little effect of psychotropic medications on common astrocyte marker gene expression, suggesting that astrocytes are not a primary target of these medications. Conversely, antipsychotic medication does affect astrocyte gene marker expression in postmortem schizophrenia brain tissue, supporting specific astrocyte responses in different pathological conditions. Overall, this study provides a unique view of astrocyte subtypes and the effect of medications on astrocytes in disease, which will contribute to our understanding of their role in psychiatric disorders and offers insights into targeting astrocytes therapeutically