2 research outputs found

    Micro Vertical Axis Wind Turbine Design Integrated with Wind Accelerating Techniques

    No full text
    Power generation from natural wind is the crucial issue due to rapid depletion of non-renewable energy resources and their pollution demerits. Most observers agreed that long-term economic growth will require technical innovation to make wind energy more competitive with other forms of energy. One among the key trends is the push to improve productivity. Vertical axis wind turbines are capable of extracting power from wind regardless of direction of natural wind flow. Very less work is devoted to improve the characteristics of wind to make it more useable for power generation. Major portion of the research is related to the wind energy system design that caters the domestic needs. A micro vertical axis wind turbine system with integrated wind accelerating techniques is proposed. At the outer of the turbine a wind accelerating convergent duct with larger wind area is proposed, that will perform as a nozzle action to accelerate the natural wind when it strikes on the front half portion of the turbine blades. Proposed micro wind turbine is also integrated with satellite dish type parabolic structure, mounted at the top of the turbine. The parabolic concentrator surface is coated with sun rays reflecting mirrors, sunlight striking on paraboliod surface is directed to words a heat absorbing hollow cylinder, erected at the center of the paraboliod concentrator. Hollow cylinder is the path channel for air leaving the turbine. Air molecules passing through this channel will be heated up, moving rapidly up word creating momentum in air leaving from the turbine. Design of the proposed vertical axis wind turbine system integrated with wind accelerating techniques and experimental study of wind accelerating duct composed of various section is reported in this research work

    Micro Vertical Axis Wind Turbine Design Integrated with Wind Accelerating Techniques

    No full text
    Power generation from natural wind is the crucial issue due to rapid depletion of non-renewable energy resources and their pollution demerits. Most observers agreed that long-term economic growth will require technical innovation to make wind energy more competitive with other forms of energy. One among the key trends is the push to improve productivity. Vertical axis wind turbines are capable of extracting power from wind regardless of direction of natural wind flow. Very less work is devoted to improve the characteristics of wind to make it more useable for power generation. Major portion of the research is related to the wind energy system design that caters the domestic needs. A micro vertical axis wind turbine system with integrated wind accelerating techniques is proposed. At the outer of the turbine a wind accelerating convergent duct with larger wind area is proposed, that will perform as a nozzle action to accelerate the natural wind when it strikes on the front half portion of the turbine blades. Proposed micro wind turbine is also integrated with satellite dish type parabolic structure, mounted at the top of the turbine. The parabolic concentrator surface is coated with sun rays reflecting mirrors, sunlight striking on paraboliod surface is directed to words a heat absorbing hollow cylinder, erected at the center of the paraboliod concentrator. Hollow cylinder is the path channel for air leaving the turbine. Air molecules passing through this channel will be heated up, moving rapidly up word creating momentum in air leaving from the turbine. Design of the proposed vertical axis wind turbine system integrated with wind accelerating techniques and experimental study of wind accelerating duct composed of various section is reported in this research work
    corecore