6 research outputs found

    Acetazolamide to Prevent Adverse Altitude Effects in COPD and Healthy Adults

    Full text link
    Background We evaluated the efficacy of acetazolamide in preventing adverse altitude effects in patients with moderate to severe chronic obstructive pulmonary disease (COPD) and in healthy lowlanders 40 years of age or older. Methods Trial 1 was a randomized, double-blind, parallel-design trial in which 176 patients with COPD were treated with acetazolamide capsules (375 mg/day) or placebo, starting 24 hours before staying for 2 days at 3100 m. The mean (±SD) age of participants was 57±9 years, and 34% were women. At 760 m, COPD patients had oxygen saturation measured by pulse oximetry of 92% or greater, arterial partial pressure of carbon dioxide less than 45 mm Hg, and mean forced expiratory volume in 1 second of 63±11% of predicted. The primary outcome in trial 1 was the incidence of the composite end point of altitude-related adverse health effects (ARAHE) at 3100 m. Criteria for ARAHE included acute mountain sickness (AMS) and symptoms or findings relevant to well-being and safety, such as severe hypoxemia, requiring intervention. Trial 2 comprised 345 healthy lowlanders. Their mean age was 53±7 years, and 69% were women. The participants in trial 2 underwent the same protocol as did the patients with COPD in trial 1. The primary outcome in trial 2 was the incidence of AMS assessed at 3100 m by the Lake Louise questionnaire score (the scale of self-assessed symptoms ranges from 0 to 15 points, indicating absent to severe, with 3 or more points including headache, indicating AMS). Results In trial 1 of patients with COPD, 68 of 90 (76%) receiving placebo and 42 of 86 (49%) receiving acetazolamide experienced ARAHE (hazard ratio, 0.54; 95% confidence interval [CI], 0.37 to 0.79; P<0.001). The number needed to treat (NNT) to prevent one case of ARAHE was 4 (95% CI, 3 to 8). In trial 2 of healthy individuals, 54 of 170 (32%) receiving placebo and 38 of 175 (22%) receiving acetazolamide experienced AMS (hazard ratio, 0.48; 95% CI, 0.29 to 0.80; chi-square statistic P=0.035). The NNT to prevent one case of AMS was 10 (95% CI, 5 to 141). No serious adverse events occurred in these trials. Conclusions Preventive treatment with acetazolamide reduced the incidence of adverse altitude effects requiring an intervention in patients with COPD and the incidence of AMS in healthy lowlanders 40 years of age or older during a high-altitude sojourn. (Funded by the Swiss National Science Foundation [Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung], Lunge Zürich, and the Swiss Lung Foundation; ClinicalTrials.gov numbers, NCT03156231 and NCT03561675.

    Validation of Noninvasive Assessment of Pulmonary Gas Exchange in Patients with Chronic Obstructive Pulmonary Disease during Initial Exposure to High Altitude

    Get PDF
    Investigation of pulmonary gas exchange efficacy usually requires arterial blood gas analysis (aBGA) to determine arterial partial pressure of oxygen (mPaO2) and compute the Riley alveolar-to-arterial oxygen difference (A-aDO2); that is a demanding and invasive procedure. A noninvasive approach (AGM100), allowing the calculation of PaO2 (cPaO2) derived from pulse oximetry (SpO2), has been developed, but this has not been validated in a large cohort of chronic obstructive pulmonary disease (COPD) patients. Our aim was to conduct a validation study of the AG100 in hypoxemic moderate-to-severe COPD. Concurrent measurements of cPaO2 (AGM100) and mPaO2 (EPOC, portable aBGA device) were performed in 131 moderate-to-severe COPD patients (mean ±SD FEV1: 60 ± 10% of predicted value) and low-altitude residents, becoming hypoxemic (i.e., SpO2 < 94%) during a short stay at 3100 m (Too-Ashu, Kyrgyzstan). Agreements between cPaO2 (AGM100) and mPaO2 (EPOC) and between the O2-deficit (calculated as the difference between end-tidal pressure of O2 and cPaO2 by the AGM100) and Riley A-aDO2 were assessed. Mean bias (±SD) between cPaO2 and mPaO2 was 2.0 ± 4.6 mmHg (95% Confidence Interval (CI): 1.2 to 2.8 mmHg) with 95% limits of agreement (LoA): −7.1 to 11.1 mmHg. In multivariable analysis, larger body mass index (p = 0.046), an increase in SpO2 (p < 0.001), and an increase in PaCO2-PETCO2 difference (p < 0.001) were associated with imprecision (i.e., the discrepancy between cPaO2 and mPaO2). The positive predictive value of cPaO2 to detect severe hypoxemia (i.e., PaO2 ≤ 55 mmHg) was 0.94 (95% CI: 0.87 to 0.98) with a positive likelihood ratio of 3.77 (95% CI: 1.71 to 8.33). The mean bias between O2-deficit and A-aDO2 was 6.2 ± 5.5 mmHg (95% CI: 5.3 to 7.2 mmHg; 95%LoA: −4.5 to 17.0 mmHg). AGM100 provided an accurate estimate of PaO2 in hypoxemic patients with COPD, but the precision for individual values was modest. This device is promising for noninvasive assessment of pulmonary gas exchange efficacy in COPD patients

    Effect of altitude and acetazolamide on sleep and nocturnal breathing in healthy lowlanders 40 y of age or older. Data from a randomized trial

    Full text link
    Study Objectives To assess altitude-induced sleep and nocturnal breathing disturbances in healthy lowlanders 40 y of age or older and the effects of preventive acetazolamide treatment. Methods Clinical examinations and polysomnography were performed at 760 m and in the first night after ascent to 3100 m in a subsample of participants of a larger trial evaluating altitude illness. Participants were randomized 1:1 to treatment with acetazolamide (375 mg/day) or placebo, starting 24 h before and while staying at 3100 m. The main outcomes were indices of sleep structure, oxygenation, and apnea/hypopnea index (AHI). Results Per protocol analysis included 86 participants (mean ± SE 53 ± 7 y old, 66% female). In 43 individuals randomized to placebo, mean nocturnal pulse oximetry (SpO2) was 94.0 ± 0.4% at 760 m and 86.7 ± 0.4% at 3100 m, with mean change (95%CI) −7.3% (−8.0 to −6.5); oxygen desaturation index (ODI) was 5.0 ± 2.3 at 760 m and 29.2 ± 2.3 at 3100 m, change 24.2/h (18.8 to 24.5); AHI was 11.3 ± 2.4/h at 760 m and 23.5 ± 2.4/h at 3100 m, change 12.2/h (7.3 to 17.0). In 43 individuals randomized to acetazolamide, altitude-induced changes were mitigated. Mean differences (Δ, 95%CI) in altitude-induced changes were: ΔSpO2 2.3% (1.3 to 3.4), ΔODI -15.0/h (−22.6 to −7.4), ΔAHI -11.4/h (−18.3 to −4.6). Total sleep time, sleep efficiency, and N3-sleep fraction decreased with an ascent to 3100 m under placebo by 40 min (17 to 60), 5% (2 to 8), and 6% (2 to 11), respectively. Acetazolamide did not significantly change these outcomes. Conclusions During a night at 3100 m, healthy lowlanders aged 40 y or older revealed hypoxemia, sleep apnea, and disturbed sleep. Preventive acetazolamide treatment improved oxygenation and nocturnal breathing but had no effect on sleep duration and structure. Trial registration The trial is registered at Clinical Trials, https://clinicaltrials.gov, NCT0356167

    Effect of High-Flow Oxygen on Exercise Performance in COPD Patients. Randomized Trial

    Full text link
    Background: High-flow oxygen therapy (HFOT) provides oxygen-enriched, humidified, and heated air at high flow rates via nasal cannula. It could be an alternative to low-flow oxygen therapy (LFOT) which is commonly used by patients with chronic obstructive pulmonary disease (COPD) during exercise training. Research Question: We evaluated the hypothesis that HFOT improves exercise endurance in COPD patients compared to LFOT. Methods: Patients with stable COPD, FEV1 40–80% predicted, resting pulse oximetry (SpO2) ≥92%, performed two constant-load cycling exercise tests to exhaustion at 75% of maximal work rate on two different days, using LFOT (3 L/min) and HFOT (60 L/min, FiO2 0.45) in randomized order according to a crossover design. Primary outcome was exercise endurance time, further outcomes were SpO2, breath rate and dyspnea. Results: In 79 randomized patients, mean ± SD age 58 ± 9 y, FEV1 63 ± 9% predicted, GOLD grades 2-3, resting PaO2 9.4 ± 1.0 kPa, intention-to-treat analysis revealed an endurance time of 688 ± 463 s with LFOT and 773 ± 471 s with HFOT, mean difference 85 s (95% CI: 7 to 164, P = 0.034), relative increase of 13% (95% CI: 1 to 28). At isotime, patients had lower respiratory rate and higher SpO2 with HFOT. At end-exercise, SpO2 was higher by 2% (95% CI: 2 to 2), and Borg CR10 dyspnea scores were lower by 0.8 points (95% CI: 0.3 to 1.2) compared to LFOT. Interpretation: In mildly hypoxemic patients with COPD, HFOT improved endurance time in association with higher arterial oxygen saturation, reduced respiratory rate and less dyspnea compared to LFOT. Therefore, HFOT is promising for enhancing exercise performance in COPD. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03955770

    Validation of Noninvasive Assessment of Pulmonary Gas Exchange in Patients with Chronic Obstructive Pulmonary Disease during Initial Exposure to High Altitude

    No full text
    Investigation of pulmonary gas exchange efficacy usually requires arterial blood gas analysis (aBGA) to determine arterial partial pressure of oxygen (mPaO2) and compute the Riley alveolar-to-arterial oxygen difference (A-aDO2); that is a demanding and invasive procedure. A noninvasive approach (AGM100), allowing the calculation of PaO2 (cPaO2) derived from pulse oximetry (SpO2), has been developed, but this has not been validated in a large cohort of chronic obstructive pulmonary disease (COPD) patients. Our aim was to conduct a validation study of the AG100 in hypoxemic moderate-to-severe COPD. Concurrent measurements of cPaO2 (AGM100) and mPaO2 (EPOC, portable aBGA device) were performed in 131 moderate-to-severe COPD patients (mean ±SD FEV1: 60 ± 10% of predicted value) and low-altitude residents, becoming hypoxemic (i.e., SpO2 < 94%) during a short stay at 3100 m (Too-Ashu, Kyrgyzstan). Agreements between cPaO2 (AGM100) and mPaO2 (EPOC) and between the O2-deficit (calculated as the difference between end-tidal pressure of O2 and cPaO2 by the AGM100) and Riley A-aDO2 were assessed. Mean bias (±SD) between cPaO2 and mPaO2 was 2.0 ± 4.6 mmHg (95% Confidence Interval (CI): 1.2 to 2.8 mmHg) with 95% limits of agreement (LoA): −7.1 to 11.1 mmHg. In multivariable analysis, larger body mass index (p = 0.046), an increase in SpO2 (p < 0.001), and an increase in PaCO2-PETCO2 difference (p < 0.001) were associated with imprecision (i.e., the discrepancy between cPaO2 and mPaO2). The positive predictive value of cPaO2 to detect severe hypoxemia (i.e., PaO2 ≤ 55 mmHg) was 0.94 (95% CI: 0.87 to 0.98) with a positive likelihood ratio of 3.77 (95% CI: 1.71 to 8.33). The mean bias between O2-deficit and A-aDO2 was 6.2 ± 5.5 mmHg (95% CI: 5.3 to 7.2 mmHg; 95%LoA: −4.5 to 17.0 mmHg). AGM100 provided an accurate estimate of PaO2 in hypoxemic patients with COPD, but the precision for individual values was modest. This device is promising for noninvasive assessment of pulmonary gas exchange efficacy in COPD patients

    Validation of Noninvasive Assessment of Pulmonary Gas Exchange in Patients with Chronic Obstructive Pulmonary Disease during Initial Exposure to High Altitude

    No full text
    Investigation of pulmonary gas exchange efficacy usually requires arterial blood gas analysis (aBGA) to determine arterial partial pressure of oxygen (mPaO2) and compute the Riley alveolar-to-arterial oxygen difference (A-aDO2); that is a demanding and invasive procedure. A noninvasive approach (AGM100), allowing the calculation of PaO2 (cPaO2) derived from pulse oximetry (SpO2), has been developed, but this has not been validated in a large cohort of chronic obstructive pulmonary disease (COPD) patients. Our aim was to conduct a validation study of the AG100 in hypoxemic moderate-to-severe COPD. Concurrent measurements of cPaO2 (AGM100) and mPaO2 (EPOC, portable aBGA device) were performed in 131 moderate-to-severe COPD patients (mean &plusmn;SD FEV1: 60 &plusmn; 10% of predicted value) and low-altitude residents, becoming hypoxemic (i.e., SpO2 &lt; 94%) during a short stay at 3100 m (Too-Ashu, Kyrgyzstan). Agreements between cPaO2 (AGM100) and mPaO2 (EPOC) and between the O2-deficit (calculated as the difference between end-tidal pressure of O2 and cPaO2 by the AGM100) and Riley A-aDO2 were assessed. Mean bias (&plusmn;SD) between cPaO2 and mPaO2 was 2.0 &plusmn; 4.6 mmHg (95% Confidence Interval (CI): 1.2 to 2.8 mmHg) with 95% limits of agreement (LoA): &minus;7.1 to 11.1 mmHg. In multivariable analysis, larger body mass index (p = 0.046), an increase in SpO2 (p &lt; 0.001), and an increase in PaCO2-PETCO2 difference (p &lt; 0.001) were associated with imprecision (i.e., the discrepancy between cPaO2 and mPaO2). The positive predictive value of cPaO2 to detect severe hypoxemia (i.e., PaO2 &le; 55 mmHg) was 0.94 (95% CI: 0.87 to 0.98) with a positive likelihood ratio of 3.77 (95% CI: 1.71 to 8.33). The mean bias between O2-deficit and A-aDO2 was 6.2 &plusmn; 5.5 mmHg (95% CI: 5.3 to 7.2 mmHg; 95%LoA: &minus;4.5 to 17.0 mmHg). AGM100 provided an accurate estimate of PaO2 in hypoxemic patients with COPD, but the precision for individual values was modest. This device is promising for noninvasive assessment of pulmonary gas exchange efficacy in COPD patients
    corecore