4 research outputs found

    Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system

    Get PDF
    Werner and Bloom syndromes are human diseases characterized by premature age-related defects including elevated cancer incidence. Using a novel Saccharomyces cerevisiae model system for aging and cancer, we show that cells lacking the RecQ helicase SGS1 (WRN and BLM homologue) undergo premature age-related changes, including reduced life span under stress and calorie restriction (CR), G1 arrest defects, dedifferentiation, elevated recombination errors, and age-dependent increase in DNA mutations. Lack of SGS1 results in a 110-fold increase in gross chromosomal rearrangement frequency during aging of nondividing cells compared with that generated during the initial population expansion. This underscores the central role of aging in genomic instability. The deletion of SCH9 (homologous to AKT and S6K), but not CR, protects against the age-dependent defects in sgs1Δ by inhibiting error-prone recombination and preventing DNA damage and dedifferentiation. The conserved function of Akt/S6k homologues in lifespan regulation raises the possibility that modulation of the IGF-I–Akt–56K pathway can protect against premature aging syndromes in mammals

    Influence of polymorphic metabolic enzymes on biotransformation and effects of diphenylmethane diisocyanate.

    No full text
    Objectives To identify effect modification produced by genetic traits found in metabolic enzymes, to investigate how these affect the levels of different biomarkers of sprayed and thermo-degraded polyurethane (PUR) based on 4,4′-diphenylmethane diisocyanate (MDI) and to determine how associated respiratory disorders are affected. Methods Two partly overlapping groups of 141 and 158 factory employees exposed to sprayed or heated MDI-PUR glue were examined in years 0 and 2, respectively, for occurrence of polymorphisms in five genes (N-acetyltransferase NAT2 and the glutathione S-transferases GSTM1, GSTM3, GSTP1 [codon 105 and 114] and GSTT1) on the basis of the polymerase chain reaction, exposure biomarkers in plasma and urine (P- and U-MDX), by means of gas chromatography-mass spectrometry, specific serum IgG antibodies against MDI (S-IgG-MDI) by means of ELISA, total S-IgE, symptoms in the eyes, nose and lower airways as assessed by questionnaire and interview, and lung function as measured by spirometry. Results Both the GSTP1 105 isoleucine/isoleucine and GSTP1 114 alanine/alanine genotypes showed higher levels of U-MDX than the other genotypes and the GSTP1 114 genotype modified the P-MDX/U-MDX relationship. GSTP1 105 isoleucine/isoleucine was found to be associated with lower levels of S-IgG-MDI and fewer eye symptoms, but with an increased risk of symptoms in the airways, as well as with atopy. Presence of the GSTT1 gene resulted in somewhat lower lung function levels than did the null genotype. A slow NAT2 acetylating capacity was associated with lower P- and U-MDX and S-IgG-MDI levels, and better lung function, but a higher risk of eye and airway symptoms. Analysing the effects of combinations of the different genes provided no further information. Conclusions Although our study has clear limitations, it reveals various effect modifications produced by the GST and NAT2 genotypes. Gene-environment interactions are highly complex. Further research is needed to obtain a more comprehensive understanding of them
    corecore