3 research outputs found

    Data Study Group Final Report: Roche

    Get PDF
    Data Study Groups are week-long events at The Alan Turing Institute bringing together some of the country’s top talent from data science, artificial intelligence, and wider fields, to analyse real-world data science challenges. Roche: Personalised lung cancer treatment modelling using electronic health records and genomics Cancer immunotherapy (CIT) is a promising new type of cancer treatment that uses the patient’s own immune system to fight cancer cells. CIT drugs work to stop the cancer cells from turning off the immune system’s T-cells by inhibiting the PD-L1 produced by the tumour cells (PD-L1 is a protein that binds to PD-1 receptors on T-cells and prevents the immune system from attacking the cancer cells). CIT is currently being used to treat patients with non-small cell lung cancer (NSCLC) for whom chemotherapy or other drugs have failed. CIT is also be-ing used as part of the first-line treatment in patients with advanced NSCLC (aNSCLC - stage III and higher). Theoretically, patients with high PD-L1 ex-pression levels are more likely to respond well to CIT; however, in practice, patient outcomes vary considerably. In this data study group, we investigated different approaches for predicting survival time for patients treated with CIT as first line of treatment, using both electronic health records and tumour genomic data. We also investigated the causal effects of CIT vs other oncology treatments, and studied treatment heterogeneity. The results contribute to identifying patients who are most likely to benefit from CIT

    Dynamic Biobanking for Advancing Breast Cancer Research

    No full text
    Longitudinal patient biospecimens and data advance breast cancer research through enabling precision medicine approaches for identifying risk, early diagnosis, improved disease management and targeted therapy. Cancer biobanks must evolve to provide not only access to high-quality annotated biospecimens and rich associated data, but also the tools required to harness these data. We present the Breast Cancer Now Tissue Bank centre at the Barts Cancer Institute as an exemplar of a dynamic biobanking ecosystem that hosts and links longitudinal biospecimens and multimodal data including electronic health records, genomic and imaging data, offered alongside integrated data sharing and analytics tools. We demonstrate how such an ecosystem can inform precision medicine efforts in breast cancer research
    corecore