6 research outputs found
A fast charge algorithm for Li-ion battery for electric vehicles
The renewable solar energy industry and electric vehicle industry are today seeking for fast battery pack recharging methods to achieve higher performances, and fast energy recovery for energy storage systems (ESS) and for electric vehicles. The charge rate of batteries impacts directly the temperature which in turn impacts the capacity fade, thus it should be kept low to prevent the cells from warming up. This not only limits the charging rate but also puts us on a trade-off, a long lifetime or a fast recharge. In this study, we tried to achieve fast charging using a new charging method that combine two charging methods, without much deterring the capacity of the battery, in order to be able to maintain a long battery lifetime. Charging time of around 82 min was achieved for a 1.8 Ah battery. We compared our findings with the literature with known charging profiles
Improvement of the magneto-electric effect of composites loaded with different magnetic particles for current sensor applications
This article proposes a methodology to improve the magneto-electric effect of a poly(vinylidene fluoride-co-trifluoroethylene) P(VDF-TrFe) copolymer, doped with nanoparticles of nickel (Ni) and nickel iron (NiFe). The preparation of the composite films were achieved through the solvent casting approach. First, P(VDF-TrFe) powders and (Ni and NiFe) nanoparticles are dispersed in dimethyl formamide (DMF) as a solvent to form a homogeneous solution. Then, the solution obtained is deposited on a flexible substrate by a spin coating process. After that, the NiFe doped composites are corona polarized, to improve the magneto-electric response of these composites. The purpose of this work is to investigate the influence of the magnetic charges added in the P(VDF-TrFe) copolymer, and to reveal the effect of corona charging (polarization) on the magneto-electric behavior of the used composites. The obtained results in this article show that both the doping and the electric polarization (piezo coefficient) significantly affect the generated alternating current during the application of an alternating magnetic field. However, the magneto-electric response of composites increases by doping and charging via corona poling effect and also by increasing the excitation frequency and the magnetic field amplitude. In addition, the magneto-electric responses of all composites after corona polarization were also discussed. This indicates that the magneto-electric coefficient and the current can be increased with polarized composites. A good response is observed for P(VDF-TrFe) + 3% Ni with a piezoelectric coefficient d33 = 21.2 (pC/N
Pyroelectric effect in lead zirconate titanate/polyurethane composite for thermal energy harvesting
We deal with the thermal energy which is one of the ambient energy sources surely exploitable, but it has not been much interest as the mechanical energy. In the last decades, direct energy conversion devices received particular attention because of the need to develop flexible systems, autonomous and self-powered. The energy harvesting aims to make the systems, autonomous in terms of energy and to contribute to sustainable development by the total respect of the environment. In this paper, our aim is to use thermal energy and show that it's an important source for producing the electrical energy through pyroelectric effect: first, elaborate charged polyurethane (PU) with different proportions (20%, 30% and 40%) of lead zirconate titanate (PZT), then to use those PZT/PU composites as a pyroelectric energy harvesting systems. Secondly, the optimization of energy harvesting and storage. The PZT/PU composite prepared is considered as one of the most promising composites for energy harvesting systems, due its various advantages, such as mechanical flexibility, high temperature sensitivity, low cost as well as its high electro-active functional properties. The current generated by all samples for temperature fluctuations over a period of time in the order of 140 s have been rectified and stored in a charge capacitor of 1μF. The stored energy can reach a maximum value in the order of 14μW for a composite loaded with 40% PZT. Therefore, these composites show an interesting potential to be used in various applications. These results shed light on the thermoelectric energy conversion by a new composite of PZT/PU having the pyroelectric property
PZT ceramic particles/polyurethane composites formalism for mechanical energy harvesting
More recently, the ferroelectric ceramic/polymer composites have been progressively replacing ferroelectric ceramics and polymers as they combine their interesting properties. Such as high compliance of polymers and high electromechanical coupling of ferroelectric ceramics those are required for piezoelectric transducer applications. At the same time, the ferroelectric ceramic/polymer composites formalism for predicting their energy-conversion capabilities is of both academic and industrial interest. The novelty of this paper is that the electrical power harvested by the PZT/PU polarized composite has been expressed in terms of the effective longitudinal piezoelectric coefficient (d33) of the composite via a parameter p related to the poling ratio. Besides, the parameter p, that is characterizing the PZT/PU composites with different longitudinal piezoelectric coefficients (d33), was evaluated. The other parameters of the electrical power expression were calculated using the Yamada model for the dielectric, piezoelectric and elastic constants. Finally, a good agreement was found between experience and model
Modeling Uncertain Travel Times in Distribution Logistics
Uncertainty quantification is a critical aspect of distribution logistics, particularly unpredictable travel times caused by traffic congestion and varying transportation conditions. This paper explores the modeling of uncertainty in dealing with travel times in the context of distribution logistics using the collocation method. First, we employ Monte Carlo simulations to assess the efficacy of the collocation method in modeling the variability and uncertainty associated with travel times. Second, we implement the collocation method in Casablanca, Morocco, a city renowned for its extensive distribution logistics operations and its dynamic traffic. Four distinct scenarios are considered: morning peak, inter-peak, evening peak, and off-peak periods. Our study explores two scenarios: one with recurrent congestion, representing typical daily conditions, and the other with unpredictable uncertainties in travel times, accounting for unexpected events that may occur during a distribution day. Our research findings enhance our understanding of the probabilistic nature of travel times in distribution logistics. This knowledge provides valuable insights applicable to both routine situations with recurrent congestion and non-recurrent congestion. The results’ findings contribute to a better understanding of the probabilistic nature of travel times in distribution logistics, offering valuable insights for optimizing route planning and scheduling
Pyroelectric Generators to Harvest Energy from Disc Brake Pads for Wireless Sensors in Electric Vehicles
There is a large amount of thermal energy wasted during the driving cycle of all kinds of vehicles. In this paper, a pyroelectric harvester system, based on temperature change, is designed for low-powered sensors for a reliable Electronic/Electric architecture development of autonomous vehicles. For this proposed approach, three main elements are required: Pyroelectric energy harvest module, energy conversion module and power storage module. The energy harvest module includes a pyroelectric material, which captures the temperature of the braking system, and harvests the wasted heat energy during the contact process. In the energy conversion module, the temperature variation through the pyroelectric material generates electricity, given the cooling phenomena with the ambient air. The energy potentially available in the form of heat produced by the friction involved in braking was evaluated using finite element analysis on the Multiphysics software environment. Therefore, we present stimulations of disc heating and cooling during the braking process at different speeds. Moreover, the potential for energy recovery in multiple rolling conditions is discussed, such as the braking cycles and the effect of the material thickness, used in the conversion module. The proposed system has undergone simulation analysis, which shows that the system can generate a voltage of 10.8 V and a power of 7.0 mW for a cycle of one braking process and around 9.5 mW for a cycle containing two successive braking. This result illustrates the feasibility of energy-autonomous applications in low-power sensors for new vehicle generations