2 research outputs found

    Predictive Modeling of Oxygen Transmission Through Micro-Perforations for Packaging Applications

    Get PDF
    Methods for creating precise perforations in respiring produce packaging are being increasingly adopted. Knowledge of oxygen transfer through perforated packaging and oxygen distribution in packages is necessary for successful packaging design of fresh produce. An approach to modeling perforated packaging performance was developed using a cylindrical chamber with precision perforations using Fick’s second law. The model was simulated using two techniques including Finite Element Method (FEM) using commercially available software and Finite Volume Method (FVM) through programming. Perforations were approximated as a source term in the second method. Both simulation techniques showed trends similar to experimental data

    Effect of Plasticizer on Oxygen Permeability of Cast Polylactic Acid (PLA) Films Determined Using Dynamic Accumulation Method

    Get PDF
    Polylactic acid (PLA) is becoming an increasingly important biopolymer for packaging applications. PLA brittleness limits its applicability. This study evaluated PLA properties with increasing amounts of added polyethylene glycol (PEG) plasticizer. Oxygen transmission rate (OTR) of cast films was determined using the newly available Dynamic Accumulation (DA) method. Arrhenius temperature sensitivity of OTR and polymer Permeability was also determined. Permeability of neat PLA is 4.848 ml mm (STP)/m2 s kPa; hence, 4.84 ml mm (STP)/m2 s kPa, 4.07 ml mm (STP)/m2 s kPa and 5.42 ml mm (STP)/m2 s kPa by adding PEG 1 %, 5% and 10% respectively. The main conclusion from this work is increasing PEG will enhance the PLA permeability number but excess PEG in PLA film will decrease the permeability number
    corecore