8 research outputs found

    The Budding Yeast “Saccharomyces cerevisiae” as a Drug Discovery Tool to Identify Plant-Derived Natural Products with Anti-Proliferative Properties

    Get PDF
    The budding yeast Saccharomyces cerevisiae is a valuable system to study cell-cycle regulation, which is defective in cancer cells. Due to the highly conserved nature of the cell-cycle machinery between yeast and humans, yeast studies are directly relevant to anticancer-drug discovery. The budding yeast is also an excellent model system for identifying and studying antifungal compounds because of the functional conservation of fungal genes. Moreover, yeast studies have also contributed greatly to our understanding of the biological targets and modes of action of bioactive compounds. Understanding the mechanism of action of clinically relevant compounds is essential for the design of improved second-generation molecules. Here we describe our methodology for screening a library of plant-derived natural products in yeast in order to identify and characterize new compounds with anti-proliferative properties

    Chemical–Genetic Profiling of Imidazo[1,2-a]pyridines and -Pyrimidines Reveals Target Pathways Conserved between Yeast and Human Cells

    Get PDF
    Small molecules have been shown to be potent and selective probes to understand cell physiology. Here, we show that imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrimidines compose a class of compounds that target essential, conserved cellular processes. Using validated chemogenomic assays in Saccharomyces cerevisiae, we discovered that two closely related compounds, an imidazo[1,2-a]pyridine and -pyrimidine that differ by a single atom, have distinctly different mechanisms of action in vivo. 2-phenyl-3-nitroso-imidazo[1,2-a]pyridine was toxic to yeast strains with defects in electron transport and mitochondrial functions and caused mitochondrial fragmentation, suggesting that compound 13 acts by disrupting mitochondria. By contrast, 2-phenyl-3-nitroso-imidazo[1,2-a]pyrimidine acted as a DNA poison, causing damage to the nuclear DNA and inducing mutagenesis. We compared compound 15 to known chemotherapeutics and found resistance required intact DNA repair pathways. Thus, subtle changes in the structure of imidazo-pyridines and -pyrimidines dramatically alter both the intracellular targeting of these compounds and their effects in vivo. Of particular interest, these different modes of action were evident in experiments on human cells, suggesting that chemical–genetic profiles obtained in yeast are recapitulated in cultured cells, indicating that our observations in yeast can: (1) be leveraged to determine mechanism of action in mammalian cells and (2) suggest novel structure–activity relationships

    Etude des ADN polymerases chez les archaebacteries

    No full text
    SIGLEINIST T 77624 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Mesenchymal Stromal Cell-Based Therapy: New Perspectives and Challenges

    No full text
    Stem cells have been the focus of intense research opening up new possibilities for the treatment of various diseases. Mesenchymal stromal cells (MSCs) are multipotent cells with relevant immunomodulatory properties and are thus considered as a promising new strategy for immune disease management. To enhance their efficiency, several issues related to both MSC biology and functions are needed to be identified and, most importantly, well clarified. The sources from which MSCs are isolated are diverse and might affect their properties. Both clinicians and scientists need to handle a phenotypic-characterized population of MSCs, particularly regarding their immunological profile. Moreover, it is now recognized that the tissue-reparative effects of MSCs are based on their immunomodulatory functions that are activated following a priming/licensing step. Thus, finding the best ways to pre-conditionate MSCs before their injection will strengthen their activity potential. Finally, soluble elements derived from MSC-secretome, including extracellular vesicles (EVs), have been proposed as a cell-free alternative tool for therapeutic medicine. Collectively, these features have to be considered and developed to ensure the efficiency and safety of MSC-based therapy. By participating to this Special Issue “Mesenchymal Stem/Stromal Cells in Immunity and Disease”, your valuable contribution will certainly enrich the content and discussion related to the thematic of MSCs.info:eu-repo/semantics/publishe

    The biological response of mesenchymal stromal cells to thymol and carvacrol in comparison to their essential oil: An innovative new study.

    No full text
    Mesenchymal stromal cells (MSCs) represent a progenitor cell population with several biological properties. MSCs are thus of therapeutic interest for cell-based therapy but great efforts are needed to enhance their efficiency and safety. Herbal remedies and in particular their bioactive molecules, are potential candidates for improving human health. The novelty and originality of this study is to develop an efficient cell-therapeutic product by combining MSCs with medicinal plant derived bioactive molecules. Thus, the impact of Essential Oil, Thymol and Carvacrol from Ptychotis verticillata on several BM-MSC biological features were studied. These compounds have shown positive effects on MSCs by preserving their morphology, sustaining their viability, promoting their proliferation, protecting them from cytotoxicity and oxidative stress. Accordingly, the combined administration of P. verticillata extract and MSCs may represent a new approach to enhance the therapeutic issue. Further investigations should greatly improve the manufacturing of these compounds as well as our understanding of the therapeutic effects of these bioactive molecules on the biology and functions of MSCs.info:eu-repo/semantics/publishe

    New Anti-Leukemic Effect of Carvacrol and Thymol Combination through Synergistic Induction of Different Cell Death Pathways

    No full text
    Acute myeloid leukemia (AML) is a cancer of the myeloid lineage of blood cells, and treatment for AML is lengthy and can be very expensive. Medicinal plants and their bioactive molecules are potential candidates for improving human health. In this work, we studied the effect of Ptychotis verticillata (PV) essential oil and its derivatives, carvacrol and thymol, in AML cell lines. We demonstrated that a combination of carvacrol and thymol induced tumor cell death with low toxicity on normal cells. Mechanistically, we highlighted that different molecular pathways, including apoptosis, oxidative, reticular stress, autophagy, and necrosis, are implicated in this potential synergistic effect. Using quantitative RT-PCR, Western blotting, and apoptosis inhibitors, we showed that cell death induced by the carvacrol and thymol combination is caspase-dependent in the HL60 cell line and caspase-independent in the other cell lines tested. Further investigations should focus on improving the manufacturing of these compounds and understanding their anti-tumoral mechanisms of action. These efforts will lead to an increase in the efficiency of the oncotherapy strategy regarding AML.info:eu-repo/semantics/publishe
    corecore