5 research outputs found

    Role of Matrix Metalloproteinase-9 in Neonatal Hypoxic-Ischemic Encephalopathy

    Get PDF
    BACKGROUND: Neonatal encephalopathy is a heterogeneous syndrome characterised by signs of central nervous system dysfunction in the newborn. Matrix metalloproteinase-9(MMP-9) increases the blood-brain barrier permeability, and their inhibitors can reduce its damage. MMP-9 has been implicated specifically in cerebral ischemia. AIM: To measure serum MMP-9 in neonatal hypoxic-ischemic encephalopathy and evaluate its correlation to the severity of early prediction and treatment. METHODS: its case-control study. The serum concentration of MMP-9 was determined by ELISA in 100 hypoxic neonates and 50 healthy neonates of matched age and sex who served as controls. RESULTS: In our present study the serum MMP-9 level was significantly higher at p = 0.0001 in hypoxic-ischemic full-term newborns (176.7 ± 68.7 ng/ml)as compared to control newborn (69.4 ± 34.85 ng/ml)and it was significantly higher at p = 0.0075 in hypoxic-ischemic preterm newborn (171.2 ± 132.9 ng/ml) when compared to control newborn (72.54 ± 36.74 ng/ml),also MMP-9 was significantly higher at Sarnat stage III at p = 0.0001. CONCLUSION: Serum MMP-9 level was significantly higher in hypoxic-ischemic newborns, and significantly increased with severity, so we suggest that serum MMP-9 level is important for predicting neurological sequel and severity in neonatal encephalopathy. &nbsp

    Isatin-benzoazine molecular hybrids as potential antiproliferative agents: synthesis and in vitro pharmacological profiling

    No full text
    Hatem A Abdel-Aziz,1 Wagdy M Eldehna,2 Adam B Keeton,3 Gary A Piazza,3 Adnan A Kadi,4 Mohamed W Attwa,4 Ali S Abdelhameed,4 Mohamed I Attia4,5 1Department of Applied Organic Chemistry, National Research Centre, Giza, 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; 3Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; 4Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 5Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt Abstract: In continuation of our endeavor with respect to the development of potent and effective isatin-based anticancer agents, we adopted the molecular hybridization approach to design and synthesize four different sets of isatin-quinazoline (6a–f and 7a–e)/phthalazine (8a–f)/quinoxaline (9a–f) hybrids. The antiproliferative activity of the target hybrids was assessed towards HT-29 (colon), ZR-75 (breast) and A-549 (lung) human cancer cell lines. Hybrids 8b–d emerged as the most active antiproliferative congener in this study. Compound 8c induced apoptosis via increasing caspase 3/7 activity by about 5-fold in the A-549 human cancer cell line. In addition, it exhibited an increase in the G1 phase and a decrease in the S and G2/M phases in the cell cycle effect assay. Furthermore, it displayed an inhibitory concentration 50% value of 9.5 µM against multidrug-resistant NCI-H69AR lung cancer cell line. The hybrid 8c was also subjected to in vitro metabolic investigations through its incubation with rat liver microsomes and analysis of the resulting metabolites with the aid of liquid chromatography-mass spectrometry. Keywords: isatins, hybridization approach, antiproliferative, apoptosi
    corecore