140 research outputs found

    Gold nanoparticles administration induces disarray of heart muscle, hemorrhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization and congested and dilated blood vessels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite significant research efforts on cancer therapy, diagnostics and imaging, many challenges remain unsolved. There are many unknown details regarding the interaction of nanoparticles (NPs) and biological systems. The structure and properties of gold nanoparticles (GNPs) make them useful for a wide array of biological applications. However, for the application of GNPs in therapy and drug delivery, knowledge regarding their bioaccumulation and associated local or systemic toxicity is necessary. Information on the biological fate of NPs, including distribution, accumulation, metabolism, and organ specific toxicity is still minimal. Studies specifically dealing with the toxicity of NPs are rare. The aim of the present study was to investigate the effects of intraperitoneal administration of GNPs on histological alterations of the heart tissue of rats in an attempt to identify and understand the toxicity and the potential role of GNPs as a therapeutic and diagnostic tool.</p> <p>Methods</p> <p>A total of 40 healthy male Wistar-Kyoto rats received 50 μl infusions of 10, 20 and 50 nm GNPs for 3 or 7 days. Animals were randomly divided into groups: 6 GNP-treated rats groups and one control group (NG). Groups 1, 2 and 3 received infusions of 50 μl GNPs of size 10 nm (3 or 7 days), 20 nm (3 or 7 days) and 50 nm (3 or 7 days), respectively.</p> <p>Results</p> <p>In comparison with the respective control rats, exposure to GNPs doses produced heart muscle disarray with a few scattered chronic inflammatory cells infiltrated by small lymphocytes, foci of hemorrhage with extravasation of red blood cells, some scattered cytoplasmic vacuolization and congested and dilated blood vessels. None of the above alterations were observed in the heart muscle of any member of the control group.</p> <p>Conclusions</p> <p>The alterations induced by intraperitoneal administration of GNPs were size-dependent, with smaller ones inducing greater affects, and were also related to the time exposure to GNPs. These alterations may indicate scattered cytoplasmic vacuolization, which may induce the toxicity effect through an inability to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These histological alterations were more prominent with 10 nm size particles than with the larger ones. The interaction of GNPs with proteins and various cell types should be considered as part of the toxicological evaluation. Additional experiments related to plasma, tissues cytokine, antioxidant defense mechanism, lipid peroxidation, histomorphologcal and ultrastructure will be performed to identify and understand the toxicity and the potential use of GNPs as therapeutic and diagnostic tools.</p

    The rheological properties of different GNPs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rheological analysis can be employed as a sensitive tool in predicting the physical properties of gold nanoparticles (GNPs). Understanding the rheological properties of GNPs can help to develop a better therapeutic cancer product, since these physical properties often link material formulation and processing stages with the ultimate end use. The rheological properties of GNPs have not been previously documented. The present study attempted to characterize the rheological properties of different sizes of GNPs at: 1) fixed temperature and wide range of shear rates; 2) varied temperature and fixed shear rate.</p> <p>Methods</p> <p>10, 20 and 50 nm GNPs was used in this study. Several rheological parameters of GNPs such as viscosity, torque%, shear stress and shear rate were evaluated using Brookfield LVDV-III Programmable rheometer supplied with temperature bath and controlled by a computer. To measure fluid properties (viscosity as function of shear rate), e.g., to determine whether the flow is Newtonian or non-Newtonian flow behaviour, and viscoelasticity (viscosity as function of temperature), rheological parameters were firstly measured at starting temperature of 37°C and wide range of shear rates from 375 to 1875 s<sup>-1</sup>, and secondly at a gradual increase of temperature from 37 to 42°C and fixed shear rate of 1875 s<sup>-1</sup>.</p> <p>Results</p> <p>The 10, 20 and 50 nm GNPs showed mean size of 9.45 ± 1.33 nm, 20.18 ± 1.80 nm, and 50 nm GNPs, respectively. The 10 and 20 nm GNPs showed spherical morphology while 50 nm GNPs showed hexagonal morphology using the transmission electron microscope (TEM). The relation between viscosity (cp) and shear rate (s<sup>-1</sup>) for 10, 20 and 50 nm GNPs at a temperature of 37°C showed non-Newtonian behaviour. Although the relationship between SS (dyne/cm<sup>2</sup>) and SR (s<sup>-1</sup>) for 10, 20 and 50 nm GNPs was linearly related however their fluid properties showed non-Newtonian behaviour.</p> <p>Conclusions</p> <p>The torque%, viscosity <b>(cp) </b>and SS (dyne/cm<sup>2</sup>) of all GNP sizes decreased with increasing the temperature and with decreasing the GNP size (for each fixed temperature value). For each shear rate value, the viscosity of all GNPs decreased with decreasing the GNP size. This study demonstrates that the physical, dimensional and morphological changes of GNPs have effective influence on their rheological properties. To understand and categorize the role of GNPs in drug delivery and cancer therapy, GNPs of varying size, number of particles, shape and surface should be taken into consideration. Moreover, further additional in vivo studies after administration of GNPs in rats should be performed to support this hypothesis.</p

    Exposure to gold nanoparticles produces cardiac tissue damage that depends on the size and duration of exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current research focuses on cancer therapy, diagnostics and imaging, although many challenges still need to be solved. However, for the application of gold nanoparticles (GNPs) in therapy and diagnostics it is necessary to know the bioaccumulation and local or systemic toxicity associated to them. The aim of the present study was to investigate the effects of intraperitoneal administration of GNPs on the histological alterations of the heart tissue of rats in an attempt to cover and understand the toxicity and the potential role of GNPs in the therapeutic and diagnostic applications.</p> <p>Methods</p> <p>Animals were randomly divided into 3 GNPs-treated rats groups and one control group (CG). The 10, 20 and 50 nm GNPs were administered intraperitonealy at the rate of 3 or 7 days as follows: Group 1: received infusion of 100 μl GNPs of size 10 nm for 3 or 7 days; Group 2: received infusion of 100 μl GNPs of size 20 nm for 3 or 7 days; Group 3: received infusion of 100 μl GNPs of size 50 nm for 3 or 7 days. Control group: received no GNPs.</p> <p>Results</p> <p>In comparison with the respective control rats, GNPs-treated rat received 100 μl of 10 and 20 nm particles for 3 days or 7 days demonstrating congested heart muscle with prominent dilated blood vessels, scattered and extravasations of red blood cells, focus of muscle hyalinosis, disturbed muscle fascicles, dense prominent focus of inflammatory cells infiltrate by small lymphocytes and few plasma cells while GNPs-treated rat received 100 μl of 50 nm particles for 3 or 7 days demonstrating benign normal looking heart muscle with normal muscle direction and fascicles, and very few scattered small lymphocytes.</p> <p>Conclusions</p> <p>The histological alterations induced by intraperitoneal administration of GNPs were size-dependent with smaller ones induced more affects and related with time exposure of GNPs. This study suggests that interaction of GNPs with proteins and various cell types might be evaluated as part of the toxicological assessment in addition to further experiments related to tissues antioxidant enzymes, oxidative parameters, lipid peroxidation, production of free radicals and/or ROS and cytokine, histomorphologcal and ultrastrucural will be performed to cover and understand the toxicity and the potential use of GNPs as therapeutic and diagnostic tool.</p

    The effects of size and period of administration of gold nanoparticles on rheological parameters of blood plasma of rats over a wide range of shear rates: In vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood viscosity appears to be independent predictor of stroke, carotid intima-media thickening, atherosclerosis and most cardiovascular diseases. In an attempt to understand the toxicity and the potential threat of GNPs therapeutic and diagnostic use, an array of rheological parameters were performed to quantify the blood plasma response to different sizes and administration periods of GNPs over a wide range of shear rates.</p> <p>Methods</p> <p>Healthy, thirty male Wistar-Kyoto rats, 8-12 weeks old (approximately 250 g body weight) were divided into control group (NG: n = 10), group 1 (G1A: intraperitoneal infusion of 10 nm GNPs for 3 days, n = 5 and G1B: intraperitoneal infusion of 10 nm GNPs for 7 days, n = 5), group 2 (G2A: intraperitoneal infusion of 50 nm GNPs for 3 days, n = 5 and G2B: intraperitoneal infusion of 50 nm GNPs for 7 days, n = 5). Dose of 100 μl of GNPs was administered to the animals via intraperitoneal injection. Blood samples of nearly 1 ml were obtained from each rat. Various rheological parameters such as torque, shear stress, shear rate, viscosity, plastic velocity, yield stress, consistency index (k) and flow index (n) were measured in the blood plasma of rats after the intraperitoneal administration of 10 and 50 nm GNP for 3 and 7 days using Brookfield LVDV-III Programmable rheometer.</p> <p>Results</p> <p>The relationship between shear stress and shear rate for control, G1A, G1B, G2A and G2B was linearly related. The plastic viscosity and the yield stress values for G1A, G1B, G2A and G2B significantly (p < 0.05) decreased compared with the control. The n and k values calculated from equation (1). The k values for G1A, G1B and G2B decreased compared with the control; however the means were not significantly different. While G2A indicates no significant change compared with the control. The values of the flow behaviour index (n) were equal ≤ 1 for all the different GNPs sizes. The viscosity values measured for 10 and 50 nm GNPs (G1A, G1B, G2A and G2B) decreased compared with the control; however the means were not significantly different. The decrease in blood plasma viscosity values observed with all GNPs is particle size and administration period independent.</p> <p>Conclusions</p> <p>At these particular shear rates, the estimated rheological parameters are not influenced by GNPs size and shape, number of NPs, surface area and administration period of GNPs. This study demonstrates that the highly decrease in blood plasma viscosity was accompanied with the smaller 10 nm GNPs compared with the 50 nm GNPs. The decrease in blood plasma viscosity induced with 10 and 50 nm GNPs may be attributed to decrease in hematocrit and haemoglobin concentration in addition to erythrocyte deformability. This study suggests that histomorphologcal, histochemical and ultrastrucural investigations are needed to evaluate the inflammations and tissue injuries, in relation to the application of GNPs as a therapeutic and diagnostic tool.</p

    Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanoparticles (NPs) can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. The aim of the present study was to investigate the particle-size, dose and exposure duration effects of gold nanoparticles (GNPs) on the hepatic tissue in an attempt to cover and understand the toxicity and their potential therapeutic and diagnostic use.</p> <p>Methods</p> <p>A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 ul of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days) to investigate particle-size, dose and exposure duration effects of GNPs on the hepatic tissue.</p> <p>Results</p> <p>In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and the sinusoids. The alterations in the hepatocytes were mainly vacuolar to hydropic degeneration, cytopasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis.</p> <p>Conclusions</p> <p>The hepatocytes swelling might be exhibited as a result of disturbances of membranes function that lead to massive influx of water and Na<sup>+ </sup>due to GNPs effects accompanied by leakage of lysosomal hydrolytic enzymes that lead to cytoplasmic degeneration and macromolecular crowding. Hydropic degeneration is a result of ion and fluid homestasis that lead to an increase of intracellular water. The vacuolated swelling of the cytoplasm of the hepatocytes of the GNPs treated rats might indicate acute and subacute liver injury induced by the GNPs. Binucleation represents a consequence of cell injury and is a sort of chromosomes hyperplasia which is usually seen in regenerating cells. The induced histological alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These alterations were size-dependent with smaller ones induced the most effects and related with time exposure of GNPs. The appearance of hepatocytes cytoplasmic degeneration and nuclear destruction may suggest that GNPs interact with proteins and enzymes of the hepatic tissue interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS) generation which in turn may induce stress in the hepatocytes to undergo atrophy and necrosis. More histomorphologcal, histochemical and ultrastrucural investigations are needed in relation of the application of GNPs with their potential role as a therapeutic and diagnostic tool.</p

    Liver uptake of gold nanoparticles after intraperitoneal administration in vivo: A fluorescence study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One particularly exciting field of research involves the use of gold nanoparticles (GNPs) in the detection and treatment of cancer cells in the liver. The detection and treatment of cancer is an area in which the light absorption and emission characteristics of GNPs have become useful. Currently, there are no data available regarding the fluorescence spectra or in vivo accumulation of nanoparticles (NPs) in rat liver after repeated administration. In an attempt to characterise the potential toxicity or hazards of GNPs in therapeutic or diagnostic use, the present study measured fluorescence spectra, bioaccumulation and toxic effects of GNPs at 3 and 7 days following intraperitoneal administration of a 50 μl/day dose of 10, 20 or 50 nm GNPs in rats.</p> <p>Methods</p> <p>The experimental rats were divided into one normal group (Ng) and six experimental groups (G1A, G1B, G2A, G2B, G3A and G3B; G1: 20 nm; G2: 10 nm; G3: 50 nm; A: infusion of GNPs for 3 days; B: infusion of GNPs for 7 days). A 50 μl dose of GNPs (0.1% Au by volume) was administered to the animals via intraperitoneal injection, and fluorescence measurements were used to identify the toxicity and tissue distribution of GNPs in vivo. Seventy healthy male Wistar-Kyoto rats were exposed to GNPs, and tissue distribution and toxicity were evaluated after 3 or 7 days of repeated exposure.</p> <p>Results</p> <p>After administration of 10 and 20 nm GNPs into the experimental rats, two fluorescence peaks were observed at 438 nm and 487 nm in the digested liver tissue. The fluorescence intensity for 10 and 20 nm GNPs (both first and second peaks) increased with the infusion time of GNPs in test rats compared to normal rats. The position of the first peak was similar for G1A, G2A, G1B, G2B, G3B and the normal (438 nm); that for G3A was shifted to a longer wavelength (444 nm) compared to the normal. The position of the second peak was similar for G1A, G1B, G2A, G2B and the control (487 nm), while it was shifted to a shorter wavelength for G3A (483 nm) and G3B (483 nm). The fluorescence intensity of the first and second peaks increased for G1A, G2A, G1B and G2B, while it decreased for G3A and G3B compared to the control.</p> <p>Conclusions</p> <p>The fluorescence intensity of GNPs varied with the number, size and shape of particles and with the ratio of surface area to volume in a given sample. Fluorescence intensity changes during infusion depended on the size and shape of GNPs, with smaller particles experiencing larger changes during the infusion time in addition to the quenching produced by the larger GNPs. It is likely that smaller particles, which have a much higher ratio of surface area to volume compared to larger particles, are more prone to aggregation and surface interaction with biological components. This study suggests that fluorescence intensity can be used to evaluate bioaccumulation and the toxicity of gold nanoparticles in rats.</p

    Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gold nanoparticles (GNPs) have important application for cell labeling and imaging, drug delivery, diagnostic and therapeutic purposes mainly in cancer. Nanoparticles (NPs) are being increasingly exploited for medical applications. The aim of the present study was to investigate the particle-size and period effects of administration of GNPs on the renal tissue in an attempt to address their potential toxicity.</p> <p>Methods</p> <p>A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 μl of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days) to investigate particle-size effect of GNPs on the renal tissue. Animals were randomly divided into groups, 6 GNPs-treated rats groups and one control group. Groups 1, 2 and 3 received infusion of 50 μl GNPs of size 10 nm (3 or 7 days), size 20 nm (3 or 7 days) and 50 nm (3 or 7 days), respectively; while groups 4, 5 and 6 received infusion of 100 μl GNPs of size 10 nm, size 20 nm and 50 nm, respectively. Stained sections of control and treated rats kidneys were examined for renal tissue alterations induced by GNPs.</p> <p>Results</p> <p>In comparison with respective control rats, exposure to GNPs doses has produced the following renal tubular alterations: cloudy swelling, vacuolar degeneration, hyaline droplets and casts, anisokaryosis, karopyknosis, karyorrhexis and karyolysis. The glomeruli showed moderate congestion with no hypercelluraity, mesangial proliferation or basement membrane thickening. The histological alterations were mainly seen in the cortex and the proximal renal convoluted tubules were more affected than the distal ones.</p> <p>Conclusions</p> <p>The induced histological alterations might be an indication of injured renal tubules due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. The findings may suggest that GNPs interact with proteins and enzymes of the renal tissue interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS) generation which in turn may induce stress in the renal cells to undergo atrophy and necrosis. The produced alterations were size-dependent with smaller ones induced more affects and related with time exposure of GNPs.</p

    Gold nanoparticles administration induced prominent inflammatory, central vein intima disruption, fatty change and Kupffer cells hyperplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in nanotechnology have identified promising candidates for many biological, biomedical and biomedicine applications. They are being increasingly exploited for medical uses and other industrial applications. The aim of the present study was to investigate the effects of administration of gold nanoparticles (GNPs) on inflammatory cells infiltration, central vein intima disruption, fatty change, and Kupffer cells hyperplasia in the hepatic tissue in an attempt to cover and understand the toxicity and the potential threat of their therapeutic and diagnostic use.</p> <p>Methods</p> <p>A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 μl of GNPs infusion of 10, 20 and 50 nm GNPs for 3 or 7 days. Animals were randomly divided into groups, 12 GNPs-treated rats groups and one control group (NG). Groups 1, 2 and 3 received infusion of 50 μl GNPs of size 10 nm (3 or 7 days), size 20 nm (3 or 7 days) and 50 nm (3 or 7 days), respectively; while groups 4, 5 and 6 received infusion of 100 μl GNPs of size 10 nm, size 20 nm and 50 nm, respectively.</p> <p>Results</p> <p>In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and sinusoids. The alterations in the hepatocytes were mainly vacuolar to hydropic degeneration, cytopasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis. In addition, inflammatory cell infiltration, Kupffer cells hyperplasia, central veins intima disruption, hepatic strands dilatation and occasional fatty change together with a loss of normal architechiture of hepatic strands were also seen.</p> <p>Conclusions</p> <p>The alterations induced by the administration of GNPs were size-dependent with smaller ones induced more affects and related with time exposure of GNPs. These alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These histological alterations may suggest that GNPs interact with proteins and enzymes of the hepatic tissue interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS) generation which in turn may induce stress in the hepatocytes to undergo necrosis.</p

    Elucidation of the effects of a high fat diet on trace elements in rabbit tissues using atomic absorption spectroscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanism of atherogenesis is not yet fully understood despite intense study in this area. The effects of high fat diet (HFD) on the changes of trace elements [iron (Fe), copper (Cu) and zinc (Zn)] in several tissues of rabbits have not been documented before. Thus, the aim of this study was to elucidate the changes in trace elements in several tissues of rabbits fed on HFD for a period of feeding of 10 weeks.</p> <p>Results</p> <p>The HFD group was fed a NOR rabbit chow supplemented with 1.0% cholesterol plus 1.0% olive oil. Fe, Cu and Zn concentrations were measured in four types of tissue from control and HFD rabbits using atomic absorption spectroscopy (AAS). Comparing HFD rabbits to control rabbits, we found that the highest percentage change of increase of Fe was 95% in lung tissue, while the lowest percentage change of increase of Fe was 7% in kidney tissue; the highest percentage change of decrease of Cu was 16% in aortic tissue, while the lowest percentage change of decrease of Cu was 6% in kidney tissue; and the highest percentage change of decrease of Zn was 71% in kidney tissue, while the lowest percentage change of decrease of Zn was 8% in lung tissue.</p> <p>Conclusions</p> <p>These results suggest that Fe plays a major role in atherogenesis; it may accelerate the process of atherosclerosis probably through the production of free radicals, deposition and absorption of intracellular and extracellular lipids in the intima, connective tissue formation, smooth muscle proliferation, lower matrix degradation capacity and increased plaque stability. Furthermore, inducing anemia in HFD rabbits may delay or inhibit the progression of atherosclerosis. Cu plays a minor role in atherogenesis and Cu supplements may inhibit the progression of atherogenesis, perhaps by reducing the migration of smooth muscle cells from the media to the intima. Zn plays a major role in atherogenesis and that it may act as an endogenous protective factor against atherosclerosis perhaps by reducing lesion Fe content, intracellular and extracellular lipids in the intima, connective tissue formation, and smooth muscle proliferation. These results suggest that it may be possible to use the measurement of changes in trace elements in different tissues of rabbits as an important risk factor during the progression of atherosclerosis.</p
    corecore