24 research outputs found
Recommended from our members
Bicarbonate Resensitization of Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics.
Endovascular infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a major health care concern, especially infective endocarditis (IE). Standard antimicrobial susceptibility testing (AST) defines most MRSA strains as "resistant" to β-lactams, often leading to the use of costly and/or toxic treatment regimens. In this investigation, five prototype MRSA strains, representing the range of genotypes in current clinical circulation, were studied. We identified two distinct MRSA phenotypes upon AST using standard media, with or without sodium bicarbonate (NaHCO3) supplementation: one highly susceptible to the antistaphylococcal β-lactams oxacillin and cefazolin (NaHCO3 responsive) and one resistant to such agents (NaHCO3 nonresponsive). These phenotypes accurately predicted clearance profiles of MRSA from target tissues in experimental MRSA IE treated with each β-lactam. Mechanistically, NaHCO3 reduced the expression of two key genes involved in the MRSA phenotype, mecA and sarA, leading to decreased production of penicillin-binding protein 2a (that mediates methicillin resistance), in NaHCO3-responsive (but not in NaHCO3-nonresponsive) strains. Moreover, both cefazolin and oxacillin synergistically killed NaHCO3-responsive strains in the presence of the host defense antimicrobial peptide (LL-37) in NaHCO3-supplemented media. These findings suggest that AST of MRSA strains in NaHCO3-containing media may potentially identify infections caused by NaHCO3-responsive strains that are appropriate for β-lactam therapy
Comparative Efficacies of Linezolid vs. Tedizolid in an Experimental Murine Model of Vancomycin-Resistant Enterococcal (VRE) Bacteremia
Tedizolid (TZD) is an oxazolidinone derivative which demonstrates bacteriostatic activity through inhibition of protein synthesis. We compared the efficacies of TZD and an earlier-generation oxazolidinone, linezolid (LZD), in an experimental murine model of bacteremia caused by two VRE strains (one each E. faecium and E. faecalis). LZD exhibited significantly better efficacy in terms of reduced VRE blood and target tissue densities than TZD in this model
Early agr activation correlates with vancomycin treatment failure in multi-clonotype MRSA endovascular infections
Objectives Persistent MRSA infections are especially relevant to endovascular infections and correlate with suboptimal outcomes. However, the virulence signatures of Staphylococcus aureus that drive such persistence outcomes are not well defined. In the current study, we investigated correlations between accessory gene regulator (agr) activation and the outcome of vancomycin treatment in an experimental model of infective endocarditis (IE) due to MRSA strains with different agr and clonal complex (CC) types. Methods Twelve isolates with the four most common MRSA CC and agr types (CC5-agr II, CC8-agr I, CC30-agr III and CC45-agr I) were evaluated for heterogeneous vancomycin-intermediate S. aureus (hVISA), agr function, agrA and RNAIII transcription, agr locus sequences, virulence and response to vancomycin in the IE model. Results Early agr RNAIII activation (beginning at 2 h of growth) in parallel with strong δ-haemolysin production correlated with persistent outcomes in the IE model following vancomycin therapy. Importantly, such treatment failures occurred across the range of CC/agr types studied. In addition, these MRSA strains: (i) were vancomycin susceptible in vitro; (ii) were not hVISA or vancomycin tolerant; and (iii) did not evolve hVISA phenotypes or perturbed δ-haemolysin activity in vivo following vancomycin therapy. Moreover, agr locus sequence analyses revealed no common point mutations that correlated with either temporal RNAIII transcription or vancomycin treatment outcomes, encompassing different CC and agr types. Conclusions These data suggest that temporal agr RNAIII activation and agr functional profiles may be useful biomarkers to predict the in vivo persistence of endovascular MRSA infections despite vancomycin therap
Impact of Vancomycin on sarA-Mediated Biofilm Formation: Role in Persistent Endovascular Infections Due to Methicillin-Resistant Staphylococcus aureus
Background. Staphylococcus aureus is the most common cause of endovascular infections. The staphylococcal accessory regulator A locus (sarA) is a major virulence determinant that may potentially impact methicillin-resistant S. aureus (MRSA) persistence in such infections via its influence on biofilm formation. Methods. Two healthcare-associated MRSA isolates from patients with persistent bacteremia and 2 prototypical community-acquired MRSA strains, as well as their respective isogenic sarA mutants, were studied for in vitro biofilm formation, fibronectin-binding capacity, autolysis, and protease and nuclease activities. These assays were done in the presence or absence of sub-minimum inhibitory concentrations (MICs) of vancomycin. In addition, these strain pairs were compared for intrinsic virulence and responses to vancomycin therapy in experimental infective endocarditis, a prototypical biofilm model. Results. All sarA mutants displayed significantly reduced biofilm formation and binding to fibronectin but increased protease production in vitro, compared with their respective parental strains. Interestingly, exposure to sub-MICs of vancomycin significantly promoted biofilm formation and fibronectin-binding in parental strains but not in sarA mutants. In addition, all sarA mutants became exquisitely susceptible to vancomycin therapy, compared with their respective parental strains, in the infective endocarditis model. Conclusions. These observations suggest that sarA activation is important in persistent MRSA endovascular infection, potentially in the setting of biofilm formatio
the synergic effect of bicarbonate and the wall teichoic acid inhibitor ticlopidine
Funding Information: This work was supported by the following grant from the National Institutes of Health: 1RO1-AI146078 (to A.S.B.). Conceptualization: S.C.E., A.S.B., R.A.P.; methodology: S.C.E., W.E.R., W.A.; formal analysis: S.C.E., W.E.R., W.A.; investigation: S.C.E., W.E.R., W.A., S.H.F., S.L.M., A.M.E.; resources: A.S.B.; writing – original draft: S.C.E., A.S.B.; writing – review and editing: S.C.E., A.S.B., R.A.P., H.F.C.; supervision: A.S.B.; project administration: A.S.B.; funding acquisition: A.S.B. Funder Grant(s) Author(s) HHS | National Institutes of Health (NIH) AI146078 Arnold S. Bayer Funding Information: This work was supported by the following grant from the National Institutes of Health: 1RO1-AI146078 (to A.S.B.). Publisher Copyright: Copyright © 2024 Ersoy et al.Methicillin-resistant Staphylococcus aureus (MRSA) strains are a major challenge for clinicians due, in part, to their resistance to most β-lactams, the first-line treatment for methicillin-susceptible S. aureus. A phenotype termed “NaHCO3-responsiveness” has been identified, wherein many clinical MRSA isolates are rendered susceptible to standard-of-care β-lactams in the presence of physiologically relevant concentrations of NaHCO3, in vitro and ex vivo; moreover, such “NaHCO3-responsive” isolates can be effectively cleared by β-lactams from target tissues in experimental infective endocarditis (IE). One mechanistic impact of NaHCO3 exposure on NaHCO3responsive MRSA is to repress WTA synthesis. This NaHCO3 effect mimics the phenotype of tarO-deficient MRSA, including sensitization to the PBP2-targeting β-lactam, cefuroxime (CFX). Herein, we further investigated the impacts of NaHCO3 exposure on CFX susceptibility in the presence and absence of a WTA synthesis inhibitor, ticlopidine (TCP), in a collection of clinical MRSA isolates from skin and soft tissue infections (SSTI) and bloodstream infections (BSI). NaHCO3 and/or TCP enhanced susceptibility to CFX in vitro, by both minimum inhibitor concentration (MIC) and time-kill assays, as well as in an ex vivo simulated endocarditis vegetations (SEV) model, in NaHCO3-responsive MRSA. Furthermore, in experimental IE (presumably in the presence of endogenous NaHCO3), pre-exposure to TCP prior to infection sensitized the NaHCO3-responsive MRSA strain (but not the non-responsive strain) to enhanced clearances by CFX in target tissues. These data support the notion that NaHCO3 is acting similarly to WTA synthesis inhibitors, and that such inhibitors have potential translational applications in the treatment of certain MRSA strains in conjunction with specific β-lactam agents.publishersversionpublishe
A prospective multicentre study evaluating the outcomes of the abdominal wall dehiscence repair using posterior component separation with transversus abdominis muscle release reinforced by a retro-muscular mesh: filling a step
Background This study aimed to evaluate the results of posterior component separation (CS) and transversus abdominis muscle release (TAR) with retro-muscular mesh reinforcement in patients with primary abdominal wall dehiscence (AWD). The secondary aims were to detect the incidence of postoperative surgical site occurrence and risk factors of incisional hernia (IH) development following AWD repair with posterior CS with TAR reinforced by retromuscular
mesh. Methods Between June 2014 and April 2018, 202 patients with grade IA primary AWD (Björck’s first classification) following midline laparotomies were treated using posterior CS with TAR release reinforced by a retro-muscular mesh in a prospective multicenter cohort study. Results The mean age was 42 ± 10 years, with female predominance (59.9%). The mean time from index surgery (midline laparotomy) to primary AWD was 7 ± 3 days. The mean vertical length of primary AWD was 16 ± 2 cm. The median time from primary AWD occurrence to posterior CS + TAR surgery was 3 ± 1 days. The mean operative time of posterior CS + TAR was 95 ± 12 min. No recurrent AWD occurred. Surgical site infections (SSI), seroma, hematoma, IH, and infected mesh occurred in 7.9%, 12.4%, 2%, 8.9%, and 3%, respectively. Mortality was reported in 2.5%. Old age, male gender, smoking, albumin level < 3.5 gm%, time from AWD to posterior CS + TAR surgery, SSI, ileus, and infected
mesh were significantly higher in IH. IH rate was 0.5% and 8.9% at two and three years, respectively. In multivariate logistic regression analyses, the predictors of IH were time from AWD till posterior CS + TAR surgical intervention, ileus, SSI, and infected mesh.
Conclusion Posterior CS with TAR reinforced by retro-muscular mesh insertion resulted in no AWD recurrence, low IH rates, and low mortality of 2.5%.
Trial registration Clinical trial: NCT05278117
Recommended from our members
Comparative Efficacies of Linezolid vs. Tedizolid in an Experimental Murine Model of Vancomycin-Resistant Enterococcal (VRE) Bacteremia.
Tedizolid (TZD) is an oxazolidinone derivative which demonstrates bacteriostatic activity through inhibition of protein synthesis. We compared the efficacies of TZD and an earlier-generation oxazolidinone, linezolid (LZD), in an experimental murine model of bacteremia caused by two VRE strains (one each E. faecium and E. faecalis). LZD exhibited significantly better efficacy in terms of reduced VRE blood and target tissue densities than TZD in this model