31 research outputs found
In Situ Surgery: Is It Safe ? (Experience with 60 cases)
Background/Purpose: Neonatal surgical unit (NSU) is the area of a hospital where sick babies having surgical problem go once they are born. Performing in-situ surgery (ISS) in the NSU is relatively a new concept that is gaining popularity in the last decade. Critically ill neonates who are too ill to transfer to the operating room can undergo safe surgery in the NSU environment of a fully-equipped pediatric hospital. Transfer of the critically ill neonates is time consuming, utilizing manpower and requiring suitable portable ventilators and extensive monitoring equipments.
Materials & Methods: This is a prospective study conducted on 60 neonates admitted in the surgical neonatal unit of the Cairo University pediatric hospital (Abou-Elrish) and where subjected to surgical procedures in the unit itself. The patients were categorized into 3 groups: The First group was the group at the beginning of the study for which minor procedures were selected. The second group was those neonates that were operated upon on emergency base for which transfer could be
hazardous. The last group included those patients on high settings of ventilation and critically ill neonates with extensive
monitoring.
Results: There was no mortality in the study related to the procedures itself. Group I patients: the time of the surgical procedures was longer than that in the OR and no increase in the infection rate was noticed. Group II in which emergency procedures were carried on showed also increase in operating time but better perioperative circumstances regarding secondary insult to viable structures & less infection rate. Group III: no significant change in outcome in comparison to cases transferred to OR except that the perioperative circumstances were better for the surgeon, anesthesiiologist & nursing teams.
Conclusion: NSU is a safe place for performing in-situ surgery (ISS) without increased risk of infection. Successful operative intervention within NSU requires good planning and cooperation between anesthesiologist, surgeons, neonatologist and nursing staff. Maximum benefit is observed in neonates who have definite risk attached to transfer to operating room.
Index Word: In-Situ Surgery (ISS) – Neonatal Surgical Unit (NSU)
Green Synthesis of Zinc Oxide Nanoparticles from Althaea officinalis Flower Extract Coated with Chitosan for Potential Healing Effects on Diabetic Wounds by Inhibiting TNF-α and IL-6/IL-1β Signaling Pathways
Sammar Fathy Elhabal,1 Nashwa Abdelaal,2 Saeed Abdul Kareem Saeed Al-Zuhairy,3 Mohamed Fathi Mohamed Elrefai,4,5 Ahmed Mohsen Elsaid Hamdan,6 Mohamed Mansour Khalifa,7 Sandra Hababeh,8 Mohammad Ahmad Khasawneh,9 Gehad M Khamis,10 Jakline Nelson,11 Passant M Mohie,10 Rania A Gad,12 Amira Rizk,13 Soad L Kabil,14 Mohamed Kandeel El-Ashery,15,16 Bhaskara R Jasti,17 Nahla A Elzohairy,18,19 Tayseer Elnawawy,20 Fatma E Hassan,21,22 Mohamed A El- Nabarawi23 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt; 2Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; 3Department of Pharmacy, Kut University College, Kut, Wasit, Iraq; 4Department of Anatomy, Histology, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan; 5Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; 6Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; 7Department of Human Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt; 8Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 9Department of Chemistry, College of Science U.A.E. University, Al-Ain, United Arab Emirates; 10Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt; 11Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; 12Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; 13Food Science and Technology Department, Faculty of Agricultural, Tanta University, Tanta, Egypt; 14Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; 15Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; 16Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt; 17Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA; 18Air Force Specialized Hospital, Cairo, Egypt; 19Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt; 20Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt; 21Medical Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt; 22General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah, Saudi Arabia; 23Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, EgyptCorrespondence: Sammar Fathy Elhabal, Email [email protected]; [email protected]; Mohamed A El- Nabarawi, Email [email protected]: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel.Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1β, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models.Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing. Keywords: wound healing, antimicrobial, antioxidant, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, chitosan, wound concentration, wound incisio
Memory CD4+ T cells are generated in the human fetal intestine
The fetus is thought to be protected from exposure to foreign antigens, yet CD45RO+ T cells reside in the fetal intestine. Here we combined functional assays with mass cytometry, single-cell RNA sequencing and high-throughput T cell antigen receptor (TCR) sequencing to characterize the CD4+ T cell compartment in the human fetal intestine. We identified 22 CD4+ T cell clusters, including naive-like, regulatory-like and memory-like subpopulations, which were confirmed and further characterized at the transcriptional level. Memory-like CD4+ T cells had high expression of Ki-67, indicative of cell division, and CD5, a surrogate marker of TCR avidity, and produced the cytokines IFN-γ and IL-2. Pathway analysis revealed a differentiation trajectory associated with cellular activation and proinflammatory effector functions, and TCR repertoire analysis indicated clonal expansions, distinct repertoire characteristics and interconnections between subpopulations of memory-like CD4+ T cells. Imaging mass cytometry indicated that memory-like CD4+ T cells colocalized with antigen-presenting cells. Collectively, these results provide evidence for the generation of memory-like CD4+ T cells in the human fetal intestine that is consistent with exposure to foreign antigens
Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy
Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe
Global variation in anastomosis and end colostomy formation following left-sided colorectal resection
Background
End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection.
Methods
This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model.
Results
In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001).
Conclusion
Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone
High-dimensional analysis reveals an immune atlas and novel neutrophil clusters in the lungs of model animals with Actinobacillus pleuropneumoniae-induced pneumonia
Due to the increase in bacterial resistance, improving the anti-infectious immunity of the host is rapidly becoming a new strategy for the prevention and treatment of bacterial pneumonia. However, the specific lung immune responses and key immune cell subsets involved in bacterial infection are obscure. Actinobacillus pleuropneumoniae (APP) can cause porcine pleuropneumonia, a highly contagious respiratory disease that has caused severe economic losses in the swine industry. Here, using high-dimensional mass cytometry, the major immune cell repertoire in the lungs of mice with APP infection was profiled. Various phenotypically distinct neutrophil subsets and Ly-6C+ inflammatory monocytes/macrophages accumulated post-infection. Moreover, a linear differentiation trajectory from inactivated to activated to apoptotic neutrophils corresponded with the stages of uninfected, onset, and recovery of APP infection. CD14+ neutrophils, which mainly increased in number during the recovery stage of infection, were revealed to have a stronger ability to produce cytokines, especially IL-10 and IL-21, than their CD14- counterparts. Importantly, MHC-II+ neutrophils with antigen-presenting cell features were identified, and their numbers increased in the lung after APP infection. Similar results were further confirmed in the lungs of piglets infected with APP and Klebsiella pneumoniae infection by using a single-cell RNA-seq technique. Additionally, a correlation analysis between cluster composition and the infection process yielded a dynamic and temporally associated immune landscape where key immune clusters, including previously unrecognized ones, marked various stages of infection. Thus, these results reveal the characteristics of key neutrophil clusters and provide a detailed understanding of the immune response to bacterial pneumonia.Pattern Recognition and Bioinformatic
High-dimensional analysis reveals an immune atlas and novel neutrophil clusters in the lungs of model animals with Actinobacillus pleuropneumoniae-induced pneumonia
Abstract Due to the increase in bacterial resistance, improving the anti-infectious immunity of the host is rapidly becoming a new strategy for the prevention and treatment of bacterial pneumonia. However, the specific lung immune responses and key immune cell subsets involved in bacterial infection are obscure. Actinobacillus pleuropneumoniae (APP) can cause porcine pleuropneumonia, a highly contagious respiratory disease that has caused severe economic losses in the swine industry. Here, using high-dimensional mass cytometry, the major immune cell repertoire in the lungs of mice with APP infection was profiled. Various phenotypically distinct neutrophil subsets and Ly-6C+ inflammatory monocytes/macrophages accumulated post-infection. Moreover, a linear differentiation trajectory from inactivated to activated to apoptotic neutrophils corresponded with the stages of uninfected, onset, and recovery of APP infection. CD14+ neutrophils, which mainly increased in number during the recovery stage of infection, were revealed to have a stronger ability to produce cytokines, especially IL-10 and IL-21, than their CD14− counterparts. Importantly, MHC-II+ neutrophils with antigen-presenting cell features were identified, and their numbers increased in the lung after APP infection. Similar results were further confirmed in the lungs of piglets infected with APP and Klebsiella pneumoniae infection by using a single-cell RNA-seq technique. Additionally, a correlation analysis between cluster composition and the infection process yielded a dynamic and temporally associated immune landscape where key immune clusters, including previously unrecognized ones, marked various stages of infection. Thus, these results reveal the characteristics of key neutrophil clusters and provide a detailed understanding of the immune response to bacterial pneumonia
Early-life compartmentalization of immune cells in human fetal tissues revealed by high-dimensional mass cytometry
The human fetal immune system must protect the infant against the sudden exposure to a large variety of pathogens upon birth. While it is known that the fetal immune system develops in sequential waves, relatively little is known about the composition of the innate and adaptive immune system in the tissues. Here, we applied high-dimensional mass cytometry to profile the immune system in human fetal liver, spleen, and intestine. With Hierarchical Stochastic Neighbor Embedding (HSNE) we distinguished 177 distinct immune cell clusters, including both previously identified and novel cell clusters. PCA analysis indicated substantial differences between the compositions of the immune system in the different organs. Through dual t-SNE we identified tissue-specific cell clusters, which were found both in the innate and adaptive compartment. To determine the spatial location of tissue-specific subsets we developed a 31-antibody panel to reveal both the immune compartment and surrounding stromal elements through analysis of snap-frozen tissue samples with imaging mass cytometry. Imaging mass cytometry reconstructed the tissue architecture and allowed both the characterization and determination of the location of the various immune cell clusters within the tissue context. Moreover, it further underpinned the distinctness of the immune system in the tissues. Thus, our results provide evidence for early compartmentalization of the adaptive and innate immune compartment in fetal spleen, liver, and intestine. Together, our data provide a unique and comprehensive overview of the composition and organization of the human fetal immune system in several tissues.Pattern Recognition and Bioinformatic
Memory CD4+ T cells are generated in the human fetal intestine
The fetus is thought to be protected from exposure to foreign antigens, yet CD45RO+ T cells reside in the fetal intestine. Here we combined functional assays with mass cytometry, single-cell RNA sequencing and high-throughput T cell antigen receptor (TCR) sequencing to characterize the CD4+ T cell compartment in the human fetal intestine. We identified 22 CD4+ T cell clusters, including naive-like, regulatory-like and memory-like subpopulations, which were confirmed and further characterized at the transcriptional level. Memory-like CD4+ T cells had high expression of Ki-67, indicative of cell division, and CD5, a surrogate marker of TCR avidity, and produced the cytokines IFN-γ and IL-2. Pathway analysis revealed a differentiation trajectory associated with cellular activation and proinflammatory effector functions, and TCR repertoire analysis indicated clonal expansions, distinct repertoire characteristics and interconnections between subpopulations of memory-like CD4+ T cells. Imaging mass cytometry indicated that memory-like CD4+ T cells colocalized with antigen-presenting cells. Collectively, these results provide evidence for the generation of memory-like CD4+ T cells in the human fetal intestine that is consistent with exposure to foreign antigens