10 research outputs found

    Photostability of J -aggregates adsorbed on TiO 2 nanoparticles and AFM imaging of J -aggregates on a glass surface

    Get PDF
    Abstract. Spectral properties and photostability of the 5,5'-6,6'-tetrachloro-1,1'-dioctyl-3,3'-bis-(3-carboxypropyl)-benzimidacarbocyanine (Dye 1) J-aggregate was investigated in solution and upon adsorption on TiO 2 nano-particles. Dye 1 was found to photodegrade on the surface of TiO 2 . Additionally, the self-assembly of Dye 1 was studied on a glass surface by non-contact atomic force microscopy (NCAFM). The dye molecules form a well-defined fiber like structure that extends for tens of micrometers. The internal structure of the fibers was clearly resolved and showed a number of small tubes wrapped around each other to form a helical structure

    Flexible Bench-Scale Recirculating Flow CPC Photoreactor for Solar Photocatalytic Degradation of Methylene Blue Using Removable TiO 2

    Get PDF
    TiO2 immobilized on polyethylene (PET) nonwoven sheet was used in the solar photocatalytic degradation of methylene blue (MB). TiO2 Evonik Aeroxide P25 was used in this study. The amount of loaded TiO2 on PET was approximately 24%. Immobilization of TiO2 on PET was conducted by dip coating process followed by exposing to mild heat and pressure. TiO2/PET sheets were wrapped on removable Teflon rods inside home-made bench-scale recirculating flow Compound Parabolic Concentrator (CPC) photoreactor prototype (platform 0.7 × 0.2 × 0.4 m3). CPC photoreactor is made up of seven low iron borosilicate glass tubes connected in series. CPC reflectors are made of stainless steel 304. The prototype was mounted on a platform tilted at 30°N local latitude in Cairo. A centrifugal pump was used to circulate water containing methylene blue (MB) dye inside the glass tubes. Efficient photocatalytic degradation of MB using TiO2/PET was achieved upon the exposure to direct sunlight. Chemical oxygen demand (COD) analyses reveal the complete mineralization of MB. Durability of TiO2/PET composite was also tested under sunlight irradiation. Results indicate only 6% reduction in the amount of TiO2 after seven cycles. No significant change was observed for the physicochemical characteristics of TiO2/PET after the successive irradiation processes

    Catalytic Decomposition of Natural Gas to CO/CO2-Free Hydrogen Production and Carbon Nanomaterials Using MgO-Supported Monometallic Iron Family Catalysts

    No full text
    Monometallic Fe, Co, and Ni/MgO catalysts with 50 wt.% metal loadings were prepared and examined for natural gas decomposition to nanocarbonaceous materials, particularly multiwalled carbon nanotubes (MWCNTs) and co-valuable hydrogen. The catalytic testing was carried out in a fixed-bed horizontal reactor at 700°C under atmospheric pressure. The fresh and/or used catalysts were characterized using XRD, TPR, HRTEM, SEM, TG/DTA, Raman spectroscopy, and BET surface measurements. The resulting data showed that the 50%Co/MgO catalyst displayed higher catalytic decomposition activity of natural gas to CO x -free hydrogen production (∼88%), higher yield of MWCNTs, and excellent stability up to 10 h time-on-stream. On the other hand, the Ni-containing catalyst showed lower catalytic activity toward hydrogen and CNTs production, principally due to the formation of rock-salt Mg x Ni (1-x) O solid solution as observed from XRD and TPR data. Accordingly, the concentration of Ni particles required for natural gas feed was extremely low. The d orbital of Ni was presumed to be occupied during the formation of the solid solution, which inhibits the solublization or adsorption of hydrocarbons on Ni particles. The MWCNTs obtained over Ni-based catalyst had narrow and homogeneous diameters (∼11-13 nm). However, the Fe/MgO catalyst exhibited intermediate activity between those of Ni and Co˭MgO catalysts toward hydrogen production (∼44%). This catalyst produced mixtures of carbon nanofibers and nanotubes
    corecore