482 research outputs found

    Association of ghrelin and leptin with reproductive hormones in constitutional delay of growth and puberty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Constitutional delay of growth and puberty (CDGP) is a variation of the onset and timing of pubertal development without a defined endocrine abnormality. Recently published studies indicate that leptin and ghrelin play a role in puberty initiation and progress. They have been implicated in regulation of GnRH secretion, with ghrelin having inhibitory and leptin, facilitatory effects. We hypothesized that elevated ghrelin and reduced leptin concentrations could be implicated in altering the tempo of puberty in adolescents with CDGP. So in the current study we evaluate variations in leptin and ghrelin levels in adolescent boys with CDGP, the relationships between both hormones and reproductive hormones including LH, FSH and testosterone were also evaluated.</p> <p>Methods</p> <p>The study enrolled 23 adolescent boys with CDGP and 20 healthy controls matched for age and sex. Weight, height, BMI, testicular volume, bone age, bone age delay, serum FSH, LH, testosterone, leptin and ghrelin were assessed.</p> <p>Results</p> <p>Adolescent boys with CDGP had significantly lower leptin and higher ghrelin than normal controls. Leptin was positively correlated with BMI, bone age, testicular volume, FSH, LH and testosterone and negatively correlated with delayed bone age and ghrelin. Ghrelin was negatively correlated with BMI, bone age, testicular volume, FSH, LH and testosterone. With multiple regression analysis BMI, FSH, LH, testosterone and ghrelin remained independently correlated with leptin while BMI, LH and testosterone remained independently correlated with ghrelin.</p> <p>Conclusion</p> <p>Elevated serum ghrelin and decreased leptin concentrations and their associations with reproductive hormones may explain the sexual immaturity in adolescent boys with CDGP.</p

    Using long term simulations to understand heat transfer processes during steady flow conditions in combined sewers

    Get PDF
    This paper describes a new heat transfer parameterisation between wastewater and in-sewer air based on understanding the physical phenomena observed in free surface wastewater and in-sewer air. Long-term wastewater and in-sewer air temperature data were collected and studied to indicate the importance of considering the heat exchange with in-sewer air and the relevant seasonal changes. The new parameterisation was based on the physical flow condition variations. Accurate modelling of wastewater temperature in linked combined sewers is needed to assess the feasibility of in-sewer heat recovery. Historically, the heat transfer coefficient between wastewater and in-sewer air has been estimated using simple empirical relationships. The newly developed parameterisation was implemented and validated using independent long-term flow and temperature datasets. Predictive accuracy of wastewater temperatures was investigated using a Taylor diagram, where absolute errors and correlations between modelled and observed values were plotted for different site sizes and seasons. The newly developed coefficient improved wastewater temperature modelling accuracy, compared with the older empirical approaches, which resulted in predicting more potential for heat recovery from large sewer networks. For individual locations, the RMSE between observed and predicted temperatures ranged between 0.15 and 0.5 °C with an overall average of 0.27 °C. Previous studies showed higher RMSE ranges, e.g., between 0.12 and 7.8 °C, with overall averages of 0.35, 0.42 and 2 °C. The new coefficient has also provided stable values at various seasons and minimised the number of required model inputs

    Using long term simulations to understand heat transfer processes during steady flow conditions in combined sewers

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. Data Availability Statement: Restrictions apply to the availability of these data.This paper describes a new heat transfer parameterisation between wastewater and in-sewer air based on understanding the physical phenomena observed in free surface wastewater and in-sewer air. Long-term wastewater and in-sewer air temperature data were collected and studied to indicate the importance of considering the heat exchange with in-sewer air and the relevant seasonal changes. The new parameterisation was based on the physical flow condition variations. Accurate modelling of wastewater temperature in linked combined sewers is needed to assess the feasibility of in-sewer heat recovery. Historically, the heat transfer coefficient between wastewater and in-sewer air has been estimated using simple empirical relationships. The newly developed parameterisation was implemented and validated using independent long-term flow and temperature datasets. Predictive accuracy of wastewater temperatures was investigated using a Taylor diagram, where absolute errors and correlations between modelled and observed values were plotted for different site sizes and seasons. The newly developed coefficient improved wastewater temperature modelling accuracy, compared with the older empirical approaches, which resulted in predicting more potential for heat recovery from large sewer networks. For individual locations, the RMSE between observed and predicted temperatures ranged between 0.15 and 0.5 °C with an overall average of 0.27 °C. Previous studies showed higher RMSE ranges, e.g., between 0.12 and 7.8 °C, with overall averages of 0.35, 0.42 and 2 °C. The new coefficient has also provided stable values at various seasons and minimised the number of required model inputs
    corecore