6 research outputs found

    Population structure and transmission of Mycobacterium bovis in Ethiopia

    Get PDF
    Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis , which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of M. bovis in Ethiopia. A total of 134 M . bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis , based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond

    Zoonotic tuberculosis in a high bovine tuberculosis burden area of Ethiopia

    Get PDF
    BackgroundTuberculosis (TB) is a major cause of ill health and one of the leading causes of death worldwide, caused by species of the Mycobacterium tuberculosis complex (MTBC), with Mycobacterium tuberculosis being the dominant pathogen in humans and Mycobacterium bovis in cattle. Zoonotic transmission of TB (zTB) to humans is frequent particularly where TB prevalence is high in cattle. In this study, we explored the prevalence of zTB in central Ethiopia, an area highly affected by bovine TB (bTB) in cattle.MethodA convenient sample of 385 patients with pulmonary tuberculosis (PTB, N = 287) and tuberculous lymphadenitis (TBLN, N = 98) were included in this cross-sectional study in central Ethiopia. Sputum and fine needle aspirate (FNA) samples were obtained from patients with PTB and TBLN, respectively, and cultures were performed using BACTEC™ MGIT™ 960. All culture positive samples were subjected to quantitative PCR (qPCR) assays, targeting IS1081, RD9 and RD4 genomic regions for detection of MTBC, M. tuberculosis and M. bovis, respectively.ResultsTwo hundred and fifty-five out of 385 sampled patients were culture positive and all were isolates identified as MTBC by being positive for the IS1081 assay. Among them, 249 (97.6%) samples had also a positive RD9 result (intact RD9 locus) and were consequently classified as M. tuberculosis. The remaining six (2.4%) isolates were RD4 deficient and thereby classified as M. bovis. Five out of these six M. bovis strains originated from PTB patients whereas one was isolated from a TBLN patient. Occupational risk and the widespread consumption of raw animal products were identified as potential sources of M. bovis infection in humans, and the isolation of M. bovis from PTB patients suggests the possibility of human-to-human transmission, particularly in patients with no known contact history with animals.ConclusionThe detected proportion of culture positive cases of 2.4% being M. bovis from this region was higher zTB rate than previously reported for the general population of Ethiopia. Patients with M. bovis infection are more likely to get less efficient TB treatment because M. bovis is inherently resistant to pyrazinamide. MTBC species identification should be performed where M. bovis is common in cattle, especially in patients who have a history of recurrence or treatment failure

    Phenotypic, molecular detection and antibiogram analysis of Aeromonas Hydrophila from Oreochromis Niloticus (Nile Tilapia) and Ready-To- eat fish products in selected Rift Valley lakes of Ethiopia

    No full text
    Abstract Background Aeromonas hydrophila is a zoonotic bacterial pathogen that frequently causes disease and mass mortalities among cultured and feral fishes worldwide. In Ethiopia, A. hydrophila outbreak was reported in Sebeta fish ponds and in Lake Tana fishery. However, there is no to little information on the molecular, and phenotypical characteristics of A. hydrophila in Ethiopian fisheries. Therefore, a cross-sectional study was conducted from November 2020 to May 2021 in selected Ethiopian Rift valley lakes. Results A total of 140 samples were collected aseptically from fish (Muscle, Gill, Intestine, Spleen and Kidney) from fish landing sites, market and restaurants with purposive sampling methods. Aeromonas selective media (AMB), morphological and biochemical tests were used to isolate and identify A. hydrophila. Accordingly, the pathogen was isolated from 81 (60.45%) of samples. Among the isolates 92.59% expressed virulence trait through β hemolysis on blood agar media with 5% sheep blood. Moreover, 54 strains (66.67%) were further confirmed with Real-Time PCR (qPCR) using ahaI gene specific primers and optimized protocol. The highest (68.51%) were detected from live fish, (24.07%) were from market fish and the lowest (7.4%%) were from ready-to-eat products. Antibiogram analysis was conducted on ten representative isolates. Accordingly, A. hydrophila isolates were susceptible to ciprofloxacin (100%), chloramphenicol (100%) and ceftriaxone (100%). However, all ten isolates were resistant to Amoxicillin and Penicillin. Conclusions The study indicates A. hydrophila strains carrying virulence ahaI gene that were ß-hemolytic and resistant to antibiotics commonly used in human and veterinary medicine are circulating in the fishery. The detection of the pathogen in 140 of the sampled fish population is alarming for potential outbreaks and zoonosis. Therefore, further molecular epidemiology of the disease should be studied to establish potential inter host transmission and antibiotic resistance traits. Therefore, raising the public awareness on risk associated with consuming undercooked or raw fish meat is pertinent

    Spoligotype analysis of Mycobacterium bovis isolates from cattle and assessment of zoonotic TB transmission among individuals working in bovine TB-infected dairy farms in Ethiopia.

    Get PDF
    Funder: ETHICOBOTSBovine tuberculosis (bTB) is a disease with impact on dairy productivity, as well as having the potential for zoonotic transmission. Understanding the genetic diversity of the disease agent Mycobacterium bovis is important for identifying its routes of transmission. Here we investigated the level of genetic diversity of M. bovis isolates and assessed the zoonotic potential in risk groups of people working in bTB-infected dairy farms in central Ethiopia. M. bovis was isolated and spoligotyped from tissue lesions collected from slaughtered cattle as well as from raw milk collected from bTB positive cows in dairy farms from six urban areas of central Ethiopia. From consented dairy farm workers, knowledge and practices related to zoonotic TB transmission, together with demographic and clinical information, was collected through interviews. Sputum or Fine Needle Aspirate (FNA) samples were collected from suspected TB cases. Spoligotyping of 55 M. bovis isolates that originated either from cattle tissues with tuberculous lesion or from raw milk revealed seven spoligotype patterns where SB1176 was the most prevalent type (47.3%). Most isolates (89.1%) were of the M. bovis African 2 clonal complex. All sputum and FNA samples from 41 dairy farm workers with symptoms of TB were culture negative for any mycobacteria. Among the 41 TB suspected farm workers, 61% did not know about bTB in cattle and its zoonotic potential, and over two-third of these workers practiced raw milk consumption. Our spoligotype analysis suggests a wider transmission of a single spoligotype in the study area. The results reported here may be useful in guiding future work to identify the source and direction of bTB transmission and hence design of a control strategy. Isolation of M. bovis from milk, knowledge gap on zoonotic TB and practice of consumption of raw milk in the study population showed potential risk for zoonotic transmission
    corecore