487 research outputs found
Head and Neck Cancer Primary Tumor Auto Segmentation Using Model Ensembling of Deep Learning in PET/CT Images
Auto-segmentation of primary tumors in oropharyngeal cancer using PET/CT images is an unmet need that has the potential to improve radiation oncology workflows. In this study, we develop a series of deep learning models based on a 3D Residual Unet (ResUnet) architecture that can segment oropharyngeal tumors with high performance as demonstrated through internal and external validation of large-scale datasets (training size = 224 patients, testing size = 101 patients) as part of the 2021 HECKTOR Challenge. Specifically, we leverage ResUNet models with either 256 or 512 bottleneck layer channels that demonstrate internal validation (10-fold cross-validation) mean Dice similarity coefficient (DSC) up to 0.771 and median 95% Hausdorff distance (95% HD) as low as 2.919 mm. We employ label fusion ensemble approaches, including Simultaneous Truth and Performance Level Estimation (STAPLE) and a voxel-level threshold approach based on majority voting (AVERAGE), to generate consensus segmentations on the test data by combining the segmentations produced through different trained cross-validation models. We demonstrate that our best performing ensembling approach (256 channels AVERAGE) achieves a mean DSC of 0.770 and median 95% HD of 3.143 mm through independent external validation on the test set. Our DSC and 95% HD test results are within 0.01 and 0.06 mm of the top ranked model in the competition, respectively. Concordance of internal and external validation results suggests our models are robust and can generalize well to unseen PET/CT data. We advocate that ResUNet models coupled to label fusion ensembling approaches are promising candidates for PET/CT oropharyngeal primary tumors auto-segmentation. Future investigations should target the ideal combination of channel combinations and label fusion strategies to maximize segmentation performance.</p
Normal Tissue Complication Probability (NTCP) Prediction Model for Osteoradionecrosis of the Mandible in Patients With Head and Neck Cancer After Radiation Therapy:Large-Scale Observational Cohort
Purpose: Osteoradionecrosis (ORN) of the mandible represents a severe, debilitating complication of radiation therapy (RT) for head and neck cancer (HNC). At present, no normal tissue complication probability (NTCP) models for risk of ORN exist. The aim of this study was to develop a multivariable clinical/dose-based NTCP model for the prediction of ORN any grade (ORNI-IV) and grade IV (ORNIV) after RT (+/- chemotherapy) in patients with HNC.Methods and Materials: Included patients with HNC were treated with (chemo-)RT between 2005 and 2015. Mandible bone radiation dose-volume parameters and clinical variables (ie, age, sex, tumor site, pre-RT dental extractions, chemotherapy history, postoperative RT, and smoking status) were considered as potential predictors. The patient cohort was randomly divided into a training (70%) and independent test (30%) cohort. Bootstrapped forward variable selection was performed in the training cohort to select the predictors for the NTCP models. Final NTCP model(s) were validated on the holdback test subset.Results: Of 1259 included patients with HNC, 13.7% (n = 173 patients) developed any grade ORN (ORNI-IV primary endpoint) and 5% (n = 65) ORNIV (secondary endpoint). All dose and volume parameters of the mandible bone were significantly associated with the development of ORN in univariable models. Multivariable analyses identified D30% and pre-RT dental extraction as independent predictors for both ORNI-IV and ORNIV best-performing NTCP models with an area under the curve (AUC) of 0.78 (AUCvalidation = 0.75 [0.69-0.82]) and 0.81 (AUCvalidation = 0.82 [0.74-0.89]), respectively.Conclusions: This study presented NTCP models based on mandible bone D30% and pre-RT dental extraction that predict ORNI-IV and ORNIV (ie, needing invasive surgical intervention) after HNC RT. Our results suggest that less than 30% of the mandible should receive a dose of 35 Gy or more for an ORNI-IV risk lower than 5%. These NTCP models can improve ORN prevention and management by identifying patients at risk of ORN. (C) 2021 The Author(s). Published by Elsevier Inc.</p
The retrospective study of the metabolic patterns of BCG-vaccination in type-2 diabetic individuals in COVID-19 infection
Background: The cross-protective nature of Bacillus Calmette-Guerin (BCG) vaccine against SARS-CoV-2 virus was previously suggested, however its effect in COVID-19 patients with type 2 diabetes (T2D) and the underlying metabolic pathways has not been addressed. This study aims to investigate the difference in the metabolomic patterns of type 2 diabetic patients with BCG vaccination showing different severity levels of COVID-19 infection. Methods: Sixty-seven COVID-19 patients were categorized into diabetic and non-diabetic individuals who had been previously vaccinated or not with BCG vaccination. Targeted metabolomics were performed from serum samples from all patients using tandem mass spectrometry. Statistical analysis included multivariate and univariate models. Results: Data suggested that while BCG vaccination may provide protection for individuals who do not have diabetes, it appears to be linked to more severe COVID-19 symptoms in T2D patients (p = 0.02). Comparing the metabolic signature of BCG vaccinated T2D individuals to non-vaccinated counterparts revealed that amino acid (sarcosine), cholesterol esters (CE 20:0, 20:1, 22:2), carboxylic acid (Aconitic acid) were enriched in BCG vaccinated T2D patients, whereas spermidine, glycosylceramides (Hex3Cer(d18:1_22:0), Hex2Cer(d18:1/22:0), HexCer(d18:1/26:1), Hex2Cer(d18:1/24:0), HexCer(d18:1/22:0) were higher in BCG vaccinated non- T2D patients. Furthermore, data indicated a decrease in sarcosine synthesis from glycine and choline and increase in spermidine synthesis in the BCG vaccinated cohort in T2D and non-T2D groups, respectively. Conclusion: This pilot study suggests increased severity of COVID-19 in BCG vaccinated T2D patients, which was marked by decreased sarcosine synthesis, perhaps via lower sarcosine-mediated removal of viral antigens.This research was funded by the Qatar National Research Fund, Grant Number NPRP11S-1212-170092
Multi-organ spatial stratification of 3-D dose distributions improves risk prediction of long-term self-reported severe symptoms in oropharyngeal cancer patients receiving radiotherapy:development of a pre-treatment decision support tool
PURPOSE: Identify Oropharyngeal cancer (OPC) patients at high-risk of developing long-term severe radiation-associated symptoms using dose volume histograms for organs-at-risk, via unsupervised clustering.MATERIAL AND METHODS: All patients were treated using radiation therapy for OPC. Dose-volume histograms of organs-at-risk were extracted from patients' treatment plans. Symptom ratings were collected via the MD Anderson Symptom Inventory (MDASI) given weekly during, and 6 months post-treatment. Drymouth, trouble swallowing, mucus, and vocal dysfunction were selected for analysis in this study. Patient stratifications were obtained by applying Bayesian Mixture Models with three components to patient's dose histograms for relevant organs. The clusters with the highest total mean doses were translated into dose thresholds using rule mining. Patient stratifications were compared against Tumor staging information using multivariate likelihood ratio tests. Model performance for prediction of moderate/severe symptoms at 6 months was compared against normal tissue complication probability (NTCP) models using cross-validation.RESULTS: A total of 349 patients were included for long-term symptom prediction. High-risk clusters were significantly correlated with outcomes for severe late drymouth (p <.0001, OR = 2.94), swallow (p = .002, OR = 5.13), mucus (p = .001, OR = 3.18), and voice (p = .009, OR = 8.99). Simplified clusters were also correlated with late severe symptoms for drymouth (p <.001, OR = 2.77), swallow (p = .01, OR = 3.63), mucus (p = .01, OR = 2.37), and voice (p <.001, OR = 19.75). Proposed cluster stratifications show better performance than NTCP models for severe drymouth (AUC.598 vs.559, MCC.143 vs.062), swallow (AUC.631 vs.561, MCC.20 vs -.030), mucus (AUC.596 vs.492, MCC.164 vs -.041), and voice (AUC.681 vs.555, MCC.181 vs -.019). Simplified dose thresholds also show better performance than baseline models for predicting late severe ratings for all symptoms.CONCLUSION: Our results show that leveraging the 3-D dose histograms from radiation therapy plan improves stratification of patients according to their risk of experiencing long-term severe radiation associated symptoms, beyond existing NTPC models. Our rule-based method can approximate our stratifications with minimal loss of accuracy and can proactively identify risk factors for radiation-associated toxicity.</p
The retrospective study of the metabolic patterns of BCG-vaccination in type-2 diabetic individuals in COVID-19 infection
BackgroundThe cross-protective nature of Bacillus Calmette-Guerin (BCG) vaccine against SARS-CoV-2 virus was previously suggested, however its effect in COVID-19 patients with type 2 diabetes (T2D) and the underlying metabolic pathways has not been addressed. This study aims to investigate the difference in the metabolomic patterns of type 2 diabetic patients with BCG vaccination showing different severity levels of COVID-19 infection.MethodsSixty-seven COVID-19 patients were categorized into diabetic and non-diabetic individuals who had been previously vaccinated or not with BCG vaccination. Targeted metabolomics were performed from serum samples from all patients using tandem mass spectrometry. Statistical analysis included multivariate and univariate models.ResultsData suggested that while BCG vaccination may provide protection for individuals who do not have diabetes, it appears to be linked to more severe COVID-19 symptoms in T2D patients (p = 0.02). Comparing the metabolic signature of BCG vaccinated T2D individuals to non-vaccinated counterparts revealed that amino acid (sarcosine), cholesterol esters (CE 20:0, 20:1, 22:2), carboxylic acid (Aconitic acid) were enriched in BCG vaccinated T2D patients, whereas spermidine, glycosylceramides (Hex3Cer(d18:1_22:0), Hex2Cer(d18:1/22:0), HexCer(d18:1/26:1), Hex2Cer(d18:1/24:0), HexCer(d18:1/22:0) were higher in BCG vaccinated non- T2D patients. Furthermore, data indicated a decrease in sarcosine synthesis from glycine and choline and increase in spermidine synthesis in the BCG vaccinated cohort in T2D and non-T2D groups, respectively.ConclusionThis pilot study suggests increased severity of COVID-19 in BCG vaccinated T2D patients, which was marked by decreased sarcosine synthesis, perhaps via lower sarcosine-mediated removal of viral antigens
Cluster-Based Toxicity Estimation of Osteoradionecrosis Via Unsupervised Machine Learning: Moving Beyond Single Dose-Parameter Normal Tissue Complication Probability by Using Whole Dose-Volume Histograms for Cohort Risk Stratification
PURPOSE: Given the limitations of extant models for normal tissue complication probability estimation for osteoradionecrosis (ORN) of the mandible, the purpose of this study was to enrich statistical inference by exploiting structural properties of data and provide a clinically reliable model for ORN risk evaluation through an unsupervised-learning analysis that incorporates the whole radiation dose distribution on the mandible.
METHODS AND MATERIALS: The analysis was conducted on retrospective data of 1259 patients with head and neck cancer treated at The University of Texas MD Anderson Cancer Center between 2005 and 2015. During a minimum 12-month posttherapy follow-up period, 173 patients in this cohort (13.7%) developed ORN (grades I to IV). The (structural) clusters of mandibular dose-volume histograms (DVHs) for these patients were identified using the K-means clustering method. A soft-margin support vector machine was used to determine the cluster borders and partition the dose-volume space. The risk of ORN for each dose-volume region was calculated based on incidence rates and other clinical risk factors.
RESULTS: The K-means clustering method identified 6 clusters among the DVHs. Based on the first 5 clusters, the dose-volume space was partitioned by the soft-margin support vector machine into distinct regions with different risk indices. The sixth cluster entirely overlapped with the others; the region of this cluster was determined by its envelopes. For each region, the ORN incidence rate per preradiation dental extraction status (a statistically significant, nondose related risk factor for ORN) was reported as the corresponding risk index.
CONCLUSIONS: This study presents an unsupervised-learning analysis of a large-scale data set to evaluate the risk of mandibular ORN among patients with head and neck cancer. The results provide a visual risk-assessment tool for ORN (based on the whole DVH and preradiation dental extraction status) as well as a range of constraints for dose optimization under different risk levels
Prospective Validation of Diffusion-Weighted MRI as a Biomarker of Tumor Response and Oncologic Outcomes in Head and Neck Cancer: Results From an Observational Biomarker Pre-Qualification Study
PURPOSE: To determine DWI parameters associated with tumor response and oncologic outcomes in head and neck (HNC) patients treated with radiotherapy (RT).
METHODS: HNC patients in a prospective study were included. Patients had MRIs pre-, mid-, and post-RT completion. We used T2-weighted sequences for tumor segmentation which were co-registered to respective DWIs for extraction of apparent diffusion coefficient (ADC) measurements. Treatment response was assessed at mid- and post-RT and was defined as: complete response (CR) vs. non-complete response (non-CR). The Mann-Whitney U test was used to compare ADC between CR and non-CR. Recursive partitioning analysis (RPA) was performed to identify ADC threshold associated with relapse. Cox proportional hazards models were done for clinical vs. clinical and imaging parameters and internal validation was done using bootstrapping technique.
RESULTS: Eighty-one patients were included. Median follow-up was 31 months. For patients with post-RT CR, there was a significant increase in mean ADC at mid-RT compared to baseline ((1.8 ± 0.29) × 10-3 mm2/s vs. (1.37 ± 0.22) × 10-3 mm2/s, p \u3c 0.0001), while patients with non-CR had no significant increase (p \u3e 0.05). RPA identified GTV-P delta (Δ)ADCmean \u3c 7% at mid-RT as the most significant parameter associated with worse LC and RFS (p = 0.01). Uni- and multi-variable analysis showed that GTV-P ΔADCmean at mid-RT ≥ 7% was significantly associated with better LC and RFS. The addition of ΔADCmean significantly improved the c-indices of LC and RFS models compared with standard clinical variables (0.85 vs. 0.77 and 0.74 vs. 0.68 for LC and RFS, respectively, p \u3c 0.0001 for both).
CONCLUSION: ΔADCmean at mid-RT is a strong predictor of oncologic outcomes in HNC. Patients with no significant increase of primary tumor ADC at mid-RT are at high risk of disease relapse
The impact of induction and/or concurrent chemoradiotherapy on acute and late patient-reported symptoms in oropharyngeal cancer:Application of a mixed-model analysis of a prospective observational cohort registry
BACKGROUND The goal of this study was to comprehensively investigate the association of chemotherapy with trajectories of acute symptom development and late symptom recovery in patients with oropharyngeal cancer (OPC) by comparing symptom burden between induction chemotherapy followed by concurrent chemoradiotherapy (ICRT), concurrent chemo-radiotherapy (CRT), or radiotherapy (RT) alone.METHODS Among a registry of 717 patients with OPC, the 28-item patient-reported MD Anderson Symptom Inventory-Head and Neck Module (MDASI-HN) symptoms were collected prospectively at baseline, weekly during RT, and 1.5, 3 to 6, 12, and 18 to 24 months after RT. The effect of the treatment regimen (ICRT, CRT, and RT alone) was examined with mixed-model analyses for the acute and late period. In the CRT cohort, the chemotherapy agent relationship with symptoms was investigated.RESULTS Chemoradiation (ICRT/CRT) compared with RT alone resulted in significantly higher acute symptom scores in the majority of MDASI-HN symptoms (ie, 21 out of 28). No late symptom differences between treatment with or without chemotherapy were observed that were not attributable to ICRT. Nausea was lower for CRT with carboplatin than for CRT with cisplatin; cetuximab was associated with particularly higher scores for acute and late skin, mucositis, and 6 other symptoms. The addition of ICRT compared with CRT or RT alone was associated with a significant increase in numbness and shortness of breath.CONCLUSION The addition of chemotherapy to definitive RT for OPC patients was associated with significantly worse acute symptom outcomes compared with RT alone, which seems to attenuate in the late posttreatment period. Moreover, induction chemotherapy was specifically associated with worse numbness and shortness of breath during and after treatment.LAY SUMMARYChemotherapy is frequently used in addition to radiotherapy cancer treatment, yet the (added) effect on treatment-induced over time is not comprehensively investigatedThis study shows that chemotherapy adds to the symptom severity reported by patients, especially during treatment</p
Quality Assurance Assessment of Intra-Acquisition Diffusion-Weighted and T2-Weighted Magnetic Resonance Imaging Registration and Contour Propagation for Head and Neck Cancer Radiotherapy
BACKGROUND/PURPOSE: Adequate image registration of anatomical and functional magnetic resonance imaging (MRI) scans is necessary for MR-guided head and neck cancer (HNC) adaptive radiotherapy planning. Despite the quantitative capabilities of diffusion-weighted imaging (DWI) MRI for treatment plan adaptation, geometric distortion remains a considerable limitation. Therefore, we systematically investigated various deformable image registration (DIR) methods to co-register DWI and T2-weighted (T2W) images.
MATERIALS/METHODS: We compared three commercial (ADMIRE, Velocity, Raystation) and three open-source (Elastix with default settings [Elastix Default], Elastix with parameter set 23 [Elastix 23], Demons) post-acquisition DIR methods applied to T2W and DWI MRI images acquired during the same imaging session in twenty immobilized HNC patients. In addition, we used the non-registered images (None) as a control comparator. Ground-truth segmentations of radiotherapy structures (tumour and organs at risk) were generated by a physician expert on both image sequences. For each registration approach, structures were propagated from T2W to DWI images. These propagated structures were then compared with ground-truth DWI structures using the Dice similarity coefficient and mean surface distance.
RESULTS: 19 left submandibular glands, 18 right submandibular glands, 20 left parotid glands, 20 right parotid glands, 20 spinal cords, and 12 tumours were delineated. Most DIR methods tookcase, with the exception of Elastix 23 which took ∼458 s to execute per case. ADMIRE and Elastix 23 demonstrated improved performance over None for all metrics and structures (Bonferroni-corrected p \u3c 0.05), while the other methods did not. Moreover, ADMIRE and Elastix 23 significantly improved performance in individual and pooled analysis compared to all other methods.
CONCLUSIONS: The ADMIRE DIR method offers improved geometric performance with reasonable execution time so should be favoured for registering T2W and DWI images acquired during the same scan session in HNC patients. These results are important to ensure the appropriate selection of registration strategies for MR-guided radiotherapy
Proton Image-guided Radiation Assignment for Therapeutic Escalation via Selection of locally advanced head and neck cancer patients [PIRATES]:A Phase I safety and feasibility trial of MRI-guided adaptive particle radiotherapy
Introduction: Radiation dose-escalation for head and neck cancer (HNC) patients aiming to improve cure rates is challenging due to the increased risk of unacceptable treatment-induced toxicities. With “Proton Image-guided Radiation Assignment for Therapeutic Escalation via Selection of locally advanced head and neck cancer patients” (PIRATES), we present a novel treatment approach that is designed to facilitate dose-escalation while minimizing the risk of dose-limiting toxicities for locally advanced HPV-negative HNC patients. The aim of this Phase I trial is to assess the safety & feasibility of PIRATES approach. Methods: The PIRATES protocol employs a multi-faceted dose-escalation approach to minimize the risk of dose-limiting toxicities (DLTs): 1) sparing surrounding normal tissue from extraneous dose with intensity-modulated proton therapy, 2) mid-treatment hybrid hyper-fractionation for radiobiologic normal tissue sparing; 3) Magnetic Resonance Imaging (MRI) guided mid-treatment boost volume adaptation, and 4) iso-effective restricted organ-at-risk dosing to mucosa and bone tissues. The time-to-event Bayesian optimal interval (TITE-BOIN) design is employed to address the challenge of the long DLT window of 6 months and find the maximum tolerated dose. The primary endpoint is unacceptable radiation-induced toxicities (Grade 4, mucositis, dermatitis, or Grade 3 myelopathy, osteoradionecrosis) occurring within 6 months following radiotherapy. The second endpoint is any grade 3 toxicity occurring in 3–6 months after radiation. Discussion: The PIRATES dose-escalation approach is designed to provide a safe avenue to intensify local treatment for HNC patients for whom therapy with conventional radiation dose levels is likely to fail. PIRATES aims to minimize the radiation damage to the tissue surrounding the tumor volume with the combination of proton therapy and adaptive radiotherapy and within the high dose tumor volume with hybrid hyper-fractionation and not boosting mucosal and bone tissues. Ultimately, if successful, PIRATES has the potential to safety increase local control rates in HNC patients with high loco-regional failure risk. Trial registration: ClinicalTrials.gov ID: NCT04870840; Registration date: May 4, 2021. Netherlands Trial Register ID: NL9603; Registration date: July 15, 2021
- …