2 research outputs found

    Robust Single-view Cone-beam X-ray Pose Estimation with Neural Tuned Tomography (NeTT) and Masked Neural Radiance Fields (mNeRF)

    Full text link
    Many tasks performed in image-guided, mini-invasive, medical procedures can be cast as pose estimation problems, where an X-ray projection is utilized to reach a target in 3D space. Expanding on recent advances in the differentiable rendering of optically reflective materials, we introduce new methods for pose estimation of radiolucent objects using X-ray projections, and we demonstrate the critical role of optimal view synthesis in performing this task. We first develop an algorithm (DiffDRR) that efficiently computes Digitally Reconstructed Radiographs (DRRs) and leverages automatic differentiation within TensorFlow. Pose estimation is performed by iterative gradient descent using a loss function that quantifies the similarity of the DRR synthesized from a randomly initialized pose and the true fluoroscopic image at the target pose. We propose two novel methods for high-fidelity view synthesis, Neural Tuned Tomography (NeTT) and masked Neural Radiance Fields (mNeRF). Both methods rely on classic Cone-Beam Computerized Tomography (CBCT); NeTT directly optimizes the CBCT densities, while the non-zero values of mNeRF are constrained by a 3D mask of the anatomic region segmented from CBCT. We demonstrate that both NeTT and mNeRF distinctly improve pose estimation within our framework. By defining a successful pose estimate to be a 3D angle error of less than 3 deg, we find that NeTT and mNeRF can achieve similar results, both with overall success rates more than 93%. However, the computational cost of NeTT is significantly lower than mNeRF in both training and pose estimation. Furthermore, we show that a NeTT trained for a single subject can generalize to synthesize high-fidelity DRRs and ensure robust pose estimations for all other subjects. Therefore, we suggest that NeTT is an attractive option for robust pose estimation using fluoroscopic projections

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore