8 research outputs found

    Myo/Nog Cells Give Rise to Myofibroblasts During Epiretinal Membrane Formation in a Mouse Model of Proliferative Vitreoretinopathy.

    Get PDF
    PURPOSE: Myo/Nog cells are the source of myofibroblasts in the lens and synthesize muscle proteins in human epiretinal membranes (ERMs). In the current study, we examined the response of Myo/Nog cells during ERM formation in a mouse model of proliferative vitreoretinopathy (PVR). METHODS: PVR was induced by intravitreal injections of gas and ARPE-19 cells. PVR grade was scored by fundus imaging, optical coherence tomography, and histology. Double label immunofluorescence localization was performed to quantify Myo/Nog cells, myofibroblasts, and leukocytes. RESULTS: Myo/Nog cells, identified by co-labeling with antibodies to brain-specific angiogenesis inhibitor 1 (BAI1) and Noggin, increased throughout the eye with induction of PVR and disease progression. They were present on the inner surface of the retina in grades 1/2 PVR and were the largest subpopulation of cells in grades 3 to 6 ERMs. All α-SMA-positive (+) cells and all but one striated myosin+ cell expressed BAI1 in grades 1 to 6 PVR. Folds and areas of retinal detachment were overlain by Myo/Nog cells containing muscle proteins. Low numbers of CD18, CD68, and CD45+ leukocytes were detected throughout the eye. Small subpopulations of BAI1+ cells expressed leukocyte markers. ARPE-19 cells were found in the vitreous but were rare in ERMs. Pigmented cells lacking Myo/Nog and muscle cell markers were present in ERMs and abundant within the retina by grade 5/6. CONCLUSIONS: Myo/Nog cells differentiate into myofibroblasts that appear to contract and produce retinal folds and detachment. Targeting BAI1 for Myo/Nog cell depletion may be a pharmacological approach to preventing and treating PVR

    Myo/Nog cells are nonprofessional phagocytes

    Get PDF
    Myo/Nog cells were discovered in the chick embryo epiblast. Their expression of MyoD reflects a commitment to the skeletal muscle lineage and capacity to differentiate into myofibroblasts. Release of Noggin by Myo/Nog cells is essential for normal morphogenesis. Myo/Nog cells rapidly respond to wounding in the skin and eyes. In this report, we present evidence suggesting that Myo/Nog cells phagocytose tattoo ink in tissue sections of human skin and engulf cell corpses in cultures of anterior human lens tissue and magnetic beads injected into the anterior chamber of mice in vivo. Myo/Nog cells are distinct from macrophages in the skin and eyes indicated by the absence of labeling with an antibody to ionized calcium binding adaptor molecule 1. In addition to their primary roles as regulators of BMP signaling and progenitors of myofibroblasts, Myo/Nog cells behave as nonprofessional phagocytes defined as cells whose primary functions are unrelated to phagocytosis but are capable of engulfment

    Depletion of Myo/Nog Cells in the Lens Mitigates Posterior Capsule Opacification in Rabbits.

    Get PDF
    Purpose: Posterior capsule opacification (PCO) is a vision-impairing disease that occurs in some adults and most children after cataract surgery. Contractile myofibroblasts contribute to PCO by producing wrinkles in the lens capsule that scatter light. Myofibroblasts in the lens originate from Myo/Nog cells named for their expression of the MyoD transcription factor and bone morphogenetic protein inhibitor noggin. In this study we tested the effects of depleting Myo/Nog cells on development of PCO. Methods: Myo/Nog cells were eliminated by injecting the G8 antibody conjugated to 3DNA nanocarriers for the cytotoxin doxorubicin (G8:3DNA:Dox) during cataract surgery in rabbits. The severity of PCO was scored by slit lamp analysis, gross and histologic observation, and immunofluorescence localization of α-smooth muscle actin. Results: G8:3DNA:Dox specifically induced cell death in Myo/Nog cells in the lens. None of the lenses administered G8:3DNA containing 9 to 36 μM doxorubicin developed greater than trace levels of central PCO and few myofibroblasts were present on the capsule. Less than 9% of these lenses exhibited greater than mild levels of peripheral PCO. Doxorubucin itself reduced PCO; however, myofibroblasts and wrinkles were abundant in the lens, and off-target effects were observed in the ciliary processes and cornea. Conclusions: Myo/Nog cells are the primary source of myofibroblasts in the lens after cataract surgery. Targeted depletion of Myo/Nog cells has potential for preventing PCO and preserving vision

    Brain-specific angiogenesis inhibitor 1 is expressed in the Myo/Nog cell lineage.

    Get PDF
    The Myo/Nog cell lineage was discovered in the chick embryo and is also present in adult mammalian tissues. The cells are named for their expression of mRNA for the skeletal muscle specific transcription factor MyoD and bone morphogenetic protein inhibitor Noggin. A third marker for Myo/Nog cells is the cell surface molecule recognized by the G8 monoclonal antibody (mAb). G8 has been used to detect, track, isolate and kill Myo/Nog cells. In this study, we screened a membrane proteome array for the target of the G8 mAb. The array consisted of \u3e5,000 molecules, each synthesized in their native confirmation with appropriate post-translational modifications in a single clone of HEK-293T cells. G8 mAb binding to the clone expressing brain-specific angiogenesis inhibitor 1 (BAI1) was detected by flow cytometry, re-verified by sequencing and validated by transfection with the plasmid construct for BAI1. Further validation of the G8 target was provided by enzyme-linked immunosorbent assay. The G8 epitope was identified by screening a high-throughput, site directed mutagenesis library designed to cover 95-100% of the 954 amino acids of the extracellular domain of the BAI1 protein. The G8 mAb binds within the third thrombospondin repeat of the extracellular domain of human BAI1. Immunofluorescence localization experiments revealed that G8 and a commercially available BAI1 mAb co-localize to the subpopulation of Myo/Nog cells in the skin, eyes and brain. Expression of the multi-functional BAI1 protein in Myo/Nog cells introduces new possibilities for the roles of Myo/Nog cells in normal and diseased tissues

    Investigating the role of Myo/Nog cells in proliferative vitreoretinopathy

    No full text
    Introduction: Myo/Nog cells are found in many adult tissues including the retina. They express the MyoD transcription factor, bone morphogenetic protein inhibitor Noggin and brain-specific angiogenesis inhibitor 1 (BAI1). It has been demonstrated that Myo/Nog are activated in response to stress and injury, migrate to wounds and differentiate into myofibroblasts that synthesize contractile proteins. After cataract surgery, Myo/Nog cells populate and deform the posterior lens capsule in a vision impairing disease called posterior capsule opacification (PCO) or secondary cataract. Myo/Nog cells also are present in membranes that form on the surface of the human retina in a condition called proliferative vitreoretinopathy (PVR) which occurs after retinal trauma or repair of a retinal detachment. Contractions of epiretinal membranes may lead to re-detachment of the retina and blindness. Objective: In this study we examined the behavior of Myo/Nog cells in a mouse model of PVR and their contributions to the progression of PVR and retinal detachment. Methods: PVR was induced in the mouse by injecting human retinal pigment epithelial cells into the vitreous. PVR was graded as 1-6 by fundus imaging, optical coherence tomography and histology. Immunofluorescence was used to view the presence of Myo/Nog cells using a confocal and epifluorescence microscope. Antibodies to BAI1, Noggin, ɑ-smooth muscle actin (ɑ-SMA), and striated myosin heavy chain were used to identify Myo/Nog cells and examine their expression of markers of muscle proteins using a double label procedure. Results: Retinas with greater PVR progression have numerous Myo/Nog cells marked by BAI1 and Noggin expression. Higher grade epiretinal membranes correlate to higher numbers of Myo/Nog cells which also express ɑ-SMA myosin. The presence of Myo/Nog cells in the PVR membrane was associated with retinal folding and retinal detachment. Conclusion: Injection of human RPE cells induces activation and expansion of the population of Myo/Nog cells. Their expression in the PVR membrane of myosin and smooth muscle actin in epiretinal membranes and their association with folds strongly suggest that their contractions lead to PVR progression and retinal detachment. Targeted elimination of Myo/Nog cells could potentially prevent re-detachment of the retina and preserve visual acuity

    Myo/Nog cells are nonprofessional phagocytes.

    No full text
    Myo/Nog cells were discovered in the chick embryo epiblast. Their expression of MyoD reflects a commitment to the skeletal muscle lineage and capacity to differentiate into myofibroblasts. Release of Noggin by Myo/Nog cells is essential for normal morphogenesis. Myo/Nog cells rapidly respond to wounding in the skin and eyes. In this report, we present evidence suggesting that Myo/Nog cells phagocytose tattoo ink in tissue sections of human skin and engulf cell corpses in cultures of anterior human lens tissue and magnetic beads injected into the anterior chamber of mice in vivo. Myo/Nog cells are distinct from macrophages in the skin and eyes indicated by the absence of labeling with an antibody to ionized calcium binding adaptor molecule 1. In addition to their primary roles as regulators of BMP signaling and progenitors of myofibroblasts, Myo/Nog cells behave as nonprofessional phagocytes defined as cells whose primary functions are unrelated to phagocytosis but are capable of engulfment

    Brain-specific angiogenesis inhibitor 1 is expressed in the Myo/Nog cell lineage.

    No full text
    The Myo/Nog cell lineage was discovered in the chick embryo and is also present in adult mammalian tissues. The cells are named for their expression of mRNA for the skeletal muscle specific transcription factor MyoD and bone morphogenetic protein inhibitor Noggin. A third marker for Myo/Nog cells is the cell surface molecule recognized by the G8 monoclonal antibody (mAb). G8 has been used to detect, track, isolate and kill Myo/Nog cells. In this study, we screened a membrane proteome array for the target of the G8 mAb. The array consisted of >5,000 molecules, each synthesized in their native confirmation with appropriate post-translational modifications in a single clone of HEK-293T cells. G8 mAb binding to the clone expressing brain-specific angiogenesis inhibitor 1 (BAI1) was detected by flow cytometry, re-verified by sequencing and validated by transfection with the plasmid construct for BAI1. Further validation of the G8 target was provided by enzyme-linked immunosorbent assay. The G8 epitope was identified by screening a high-throughput, site directed mutagenesis library designed to cover 95-100% of the 954 amino acids of the extracellular domain of the BAI1 protein. The G8 mAb binds within the third thrombospondin repeat of the extracellular domain of human BAI1. Immunofluorescence localization experiments revealed that G8 and a commercially available BAI1 mAb co-localize to the subpopulation of Myo/Nog cells in the skin, eyes and brain. Expression of the multi-functional BAI1 protein in Myo/Nog cells introduces new possibilities for the roles of Myo/Nog cells in normal and diseased tissues
    corecore