10 research outputs found
Magnetic resonance imaging in acute meningoencephalitis of viral and unknown origin: frequent findings and prognostic potential
BackgroundMagnetic resonance imaging (MRI) findings in meningoencephalitis have mainly been described in terms of their diagnostic value rather than their prognostic potential, except for herpes simplex virus (HSV) encephalitis. The aims of our study were to describe frequency and anatomic locations of MRI abnormalities specific to limbic, circadian and motor systems in a cohort of meningoencephalitis patients, as well as to investigate the prognostic value of these MRI findings.MethodsA secondary, selective analysis of a retrospective database including all meningitis, meningoencephalitis and encephalitis cases treated between 2016 and 2018 in the University hospital of Bern, Switzerland was performed. Patients with meningitis of any cause, bacterial or autoimmune causes of encephalitis were excluded.ResultsMRI scans and clinical data from 129 meningoencephalitis cases found that the most frequent causes were tick-borne encephalitis (TBE, 42%), unknown pathogens (40%), VZV (7%), and HSV1 (5%). At discharge, median modified Rankin Score (mRS) was 3 (interquartile range, IQR, 1), 88% of patients had persisting signs and symptoms. After a median of 17 months, median Glasgow Outcome Score (GOS) was 5 (IQR 1), 39% of patients still had residual signs or symptoms. All patients with HSV, 27% with TBE and 31% of those with meningoencephalitis of unknown etiology had fluid-attenuated inversion recovery (FLAIR) and to a lesser extent diffusion-weighted imaging (DWI) lesions in their initial MRI, with highly overlapping anatomical distribution. In one fifth of TBE patients the limbic system was affected. Worse outcome was associated with presence of DWI and/or FLAIR lesions and lower normalized apparent diffusion coefficient (ADC) signal intensities.ConclusionPresence of FLAIR lesions, restricted diffusion as well as the extent of ADC hypointensity in initial MRI are parameters which might be of prognostic value regarding the longterm clinical outcome for patients with meningoencephalitis of viral and of unknown origin. Although not described before, affection of limbic structures by TBE is possible as shown by our results: A substantial proportion of our TBE patients had FLAIR signal abnormalities in these regions
Meningitis, meningoencephalitis and encephalitis in Bern: an observational study of 258 patients.
BACKGROUND
Depending on geographic location, causes of encephalitis, meningoencephalitis and meningitis vary substantially. We aimed to identify the most frequent causes, clinical presentation and long-term outcome of encephalitis, meningoencephalitis and meningitis cases treated in the Inselspital University Hospital Bern, Switzerland.
METHODS
In this monocentric, observational study, we performed a retrospective review of clinical patient records for all patients treated within a 3-year period. Patients were contacted for a telephone follow-up interview and to fill out questionnaires, especially related to disturbances of sleep and wakefulness.
RESULTS
We included 258 patients with the following conditions: encephalitis (18%), nonbacterial meningoencephalitis (42%), nonbacterial meningitis (27%) and bacterial meningoencephalitis/meningitis (13%). Herpes simplex virus (HSV) was the most common cause of encephalitis (18%); tick-borne encephalitis virus (TBEV) was the most common cause of nonbacterial meningoencephalitis (46%), enterovirus was the most common cause of nonbacterial meningitis (21%) and Streptococcus pneumoniae was the most common cause of bacterial meningoencephalitis/meningitis (49%). Overall, 35% patients remained without a known cause. After a median time of 16 months, 162 patients participated in the follow-up interview; 56% reported suffering from neurological long-term sequelae such as fatigue and/or excessive daytime sleepiness (34%), cognitive impairment and memory deficits (22%), headache (14%) and epileptic seizures (11%).
CONCLUSIONS
In the Bern region, Switzerland, TBEV was the overall most frequently detected infectious cause, with a clinical manifestation of meningoencephalitis in the majority of cases. Long-term neurological sequelae, most importantly cognitive impairment, fatigue and headache, were frequently self-reported not only in encephalitis and meningoencephalitis survivors but also in viral meningitis survivors up to 40 months after acute infection
Influence of raw milk microflora and starter cultures in cheese on protein hydrolysis and bioactive peptide generation during digestion
Do bacterial strains in cheese have an impact on the protein hydrolysis during human digestion, and if so, does a higher microbial diversity lead to the generation of a higher number of different peptides after digestion? Cheese bacteria are responsible for the hydrolysis of proteins already during cheese ripening. These bacterial cultures are introduced at different steps of the cheese manufacturing process. First, the raw milk flora that is dependent on the milk heat treatment before the cheese manufacturing process, is a major source of a variety of bacteria. Second, starter cultures, needed for a successful acidification of the cheese curd are added to prevent side fermentations. Third, addition of cultures is made for improving flavor or accelerating the ripening process, depending on the type of cheese. Because of bacterial proteolytic activity, proteins in cheese are partially hydrolyzed, depending on the ripening time and are further digested by gastric and pancreatic proteases, after consumption, to the level of small peptides and free amino acids. In order to elucidate possible differences in proteolysis depending on the presence of different bacteria, Swiss Raclette cheeses were produced either from raw or pasteurized milk with or without addition of a proteolytic bacterial strains (Lactobacillus helveticus) and ripened during 120 days. The microbial diversity and the relative abundance of specific strains in the different cheeses was assessed after 24 hours, 80 and 120 days of cheese ripening by sequencing the hypervariable regions V1-V2 of the 16S rRNA genes. Moreover, protein hydrolysis in the different cheeses was analyzed with gel electrophoresis, mass spectrometry, and HPLC after in vitro digestion, applying a static (Infogest) and a dynamic (DIDGI®) oro-gastrointestinal in vitro digestion protocol. In order to gain information on the influence of bacterial strains on protein hydrolysis, the 16s meta-genomic and 16s meta-transcriptomic results were correlated with protein and peptide patterns
Influence of raw milk microflora and starter cultures in cheese on protein hydrolysis and bioactive peptide generation during digestion
Do bacterial strains in cheese have an impact on the protein hydrolysis during human digestion, and if so, does a higher microbial diversity lead to the generation of a higher number of different peptides after digestion? Cheese bacteria are responsible for the hydrolysis of proteins already during cheese ripening. These bacterial cultures are introduced at different steps of the cheese manufacturing process. First, the raw milk flora that is dependent on the milk heat treatment before the cheese manufacturing process, is a major source of a variety of bacteria. Second, starter cultures, needed for a successful acidification of the cheese curd are added to prevent side fermentations. Third, addition of cultures is made for improving flavor or accelerating the ripening process, depending on the type of cheese. Because of bacterial proteolytic activity, proteins in cheese are partially hydrolyzed, depending on the ripening time and are further digested by gastric and pancreatic proteases, after consumption, to the level of small peptides and free amino acids. In order to elucidate possible differences in proteolysis depending on the presence of different bacteria, Swiss Raclette cheeses were produced either from raw or pasteurized milk with or without addition of a proteolytic bacterial strains (Lactobacillus helveticus) and ripened during 120 days. The microbial diversity and the relative abundance of specific strains in the different cheeses was assessed after 24 hours, 80 and 120 days of cheese ripening by sequencing the hypervariable regions V1-V2 of the 16S rRNA genes. Moreover, protein hydrolysis in the different cheeses was analyzed with gel electrophoresis, mass spectrometry, and HPLC after in vitro digestion, applying a static (Infogest) and a dynamic (DIDGI®) oro-gastrointestinal in vitro digestion protocol. In order to gain information on the influence of bacterial strains on protein hydrolysis, the 16s meta-genomic and 16s meta-transcriptomic results were correlated with protein and peptide patterns
Influence of raw milk microflora and starter cultures in cheese on protein hydrolysis and bioactive peptide generation during digestion
Do bacterial strains in cheese have an impact on the protein hydrolysis during human digestion, and if so, does a higher microbial diversity lead to the generation of a higher number of different peptides after digestion? Cheese bacteria are responsible for the hydrolysis of proteins already during cheese ripening. These bacterial cultures are introduced at different steps of the cheese manufacturing process. First, the raw milk flora that is dependent on the milk heat treatment before the cheese manufacturing process, is a major source of a variety of bacteria. Second, starter cultures, needed for a successful acidification of the cheese curd are added to prevent side fermentations. Third, addition of cultures is made for improving flavor or accelerating the ripening process, depending on the type of cheese. Because of bacterial proteolytic activity, proteins in cheese are partially hydrolyzed, depending on the ripening time and are further digested by gastric and pancreatic proteases, after consumption, to the level of small peptides and free amino acids. In order to elucidate possible differences in proteolysis depending on the presence of different bacteria, Swiss Raclette cheeses were produced either from raw or pasteurized milk with or without addition of a proteolytic bacterial strains (Lactobacillus helveticus) and ripened during 120 days. The microbial diversity and the relative abundance of specific strains in the different cheeses was assessed after 24 hours, 80 and 120 days of cheese ripening by sequencing the hypervariable regions V1-V2 of the 16S rRNA genes. Moreover, protein hydrolysis in the different cheeses was analyzed with gel electrophoresis, mass spectrometry, and HPLC after in vitro digestion, applying a static (Infogest) and a dynamic (DIDGI®) oro-gastrointestinal in vitro digestion protocol. In order to gain information on the influence of bacterial strains on protein hydrolysis, the 16s meta-genomic and 16s meta-transcriptomic results were correlated with protein and peptide patterns
A community effort to assess and improve drug sensitivity prediction algorithms
International audienc