61 research outputs found
The quality of different types of child care at 10 and 18 months. A comparison between types and factors related to quality.
The quality of care offered in four different types of non-parental child care to 307 infants at 10 months old and 331 infants at 18 months old was compared and factors associated with higher quality were identified. Observed quality was lowest in nurseries at each age point, except that at 18 months they offered more learning activities. There were few differences in the observed quality of care by child-minders, grandparents and nannies, although grandparents had somewhat lower safety and health scores and offered children fewer activities. Cost was largely unrelated to quality of care except in child-minding, where higher cost was associated with higher quality. Observed ratios of children to adults had a significant impact on quality of nursery care; the more infants or toddlers each adult had to care for, the lower the quality of the care she gave them. Mothers' overall satisfaction with their child's care was positively associated with its quality for home-based care but not for nursery settings
TRAF6 Autoubiquitination-Independent Activation of the NFÎșB and MAPK Pathways in Response to IL-1 and RANKL
The adapter protein TRAF6 is critical for mediating signal transduction from members of the IL-1R/TLR and TNFR superfamilies. The TRAF6 RING finger domain functions as an ubiquitin E3 ligase capable of generating non-degradative K63-linked ubiquitin chains. It is believed that these chains serve as docking sites for formation of signaling complexes, and that K63-linked autoubiquitination of TRAF6 is essential for formation and activation of a complex involving the kinase TAK1 and its adapters, TAB1 and TAB2. In order to assess independently the E3 ligase and ubiquitin substrate functions of TRAF6, we generated, respectively, RING domain and complete lysine-deficient TRAF6 mutants. We found that while the TRAF6 RING domain is required for activation of TAK1, it is dispensable for interaction between TRAF6 and the TAK1-TAB1-TAB2 complex. Likewise, lysine-deficient TRAF6 was found to interact with the TAK1-TAB1-TAB2 complex, but surprisingly was also found to be fully competent to activate TAK1, as well as NFÎșB and AP-1 reporters. Furthermore, lysine-deficient TRAF6 rescued IL-1-mediated NFÎșB and MAPK activation, as well as IL-6 elaboration in retrovirally-rescued TRAF6-deficient fibroblasts. Lysine-deficient TRAF6 also rescued RANKL-mediated NFÎșB and MAPK activation, and osteoclastogenesis in retrovirally-rescued TRAF6-deficient bone marrow macrophages. While incapable of being ubiquitinated itself, we demonstrate that lysine-deficient TRAF6 remains competent to induce ubiquitination of IKKÎł/NEMO. Further, this NEMO modification contributes to TRAF6-mediated activation of NFÎșB. Collectively, our results suggest that while TRAF6 autoubiquitination may serve as a marker of activation, it is unlikely to underpin RING finger-dependent TRAF6 function
Methods to Quantify Nanomaterial Association with, and Distribution across, the Blood-Brain Barrier in Vivo
The role and functional anatomy of the blood-brain barrier (BBB) is summarized to enable the investigator to appropriately address evaluation of nanomaterial interaction with, and distribution across, it into brain tissue (parenchyma). Transport mechanisms across the BBB are presented, in relation to nanomaterial physicochemical properties. Measures and test substances to assess BBB integrity/disruption/permeation are introduced, along with how they are used to interpret the results obtained with the presented methods. Experimental pitfalls and misinterpretation of results of studies of brain nanomaterial uptake are briefly summarized, that can be avoided with the methods presented in this chapter. Two methods are presented. The in situ brain perfusion technique is used to determine rate and extent of nanomaterial distribution into the brain. The capillary depletion method separates brain parenchymal tissue from the endothelial cells that contribute to the BBB. It is used to verify nanomaterial brain tissue entry. These methods are best used together, the latter refining the results obtained with the former. Details of the materials and equipment needed to conduct these methods, and description of the procedures and data interpretation, are provided
Ionic liquids at electrified interfaces
Until recently, âroom-temperatureâ (<100â150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)â(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of âfirst-generationâ room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the âlater generationâ RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in âcocktailsâ of oneâs choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost âuniversalâ solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) âsister-systemsâ.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules
- âŠ