1,148 research outputs found
Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817
The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (lesssim1 s) and intermediate-duration (lesssim500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1–4 kHz is at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is for a millisecond magnetar model, and for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position and days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817
The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range between for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if gsim10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way
Measurement of the high-mass drell-yan cross section and limits on quark-electron compositeness scales
We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120pb-1 of data collected in pp̅ collisions at √s=1.8TeV by the D0 Collaboration during 1992-1996. No deviation from standard model expectations is observed. We use the data to set limits on the quark-electron compositeness scale. The 95% confidence level lower limits on the compositeness scale vary between 3.3 and 6.1 TeV depending on the assumed form of the effective contact interaction
Experimental search for chargino and neutralino production in supersymmetry models with a light gravitino
We search for inclusive high ET diphoton events with large missing transverse energy in pp̅ collisions at √s=1.8 TeV. Such events are expected from pair production of charginos and neutralinos within the framework of the minimal supersymmetric standard model with a light gravitino. No excess of events is observed. In that model, and assuming gaugino mass unification at the GUT scale, we obtain a 95% C.L. exclusion region in the supersymmetry parameter space and lower mass bounds of 150 GeV/c2 for the lightest chargino and 77 GeV/c2 for the lightest neutralino
Measurement of the W boson mass
We present a measurement of the W boson mass using data collected by the D0 experiment at the Fermilab Tevatron during 1994-1995. We identify W bosons by their decays to eν final states. We extract the W mass MW by fitting the transverse mass and transverse electron momentum spectra from a sample of 28323 W→eν decay candidates. We use a sample of 3563 dielectron events, mostly due to Z→ee decays, to constrain our model of the detector response. From the transverse mass fit we measure MW=80.44±0.10(stat)±0.07(syst) GeV. Combining this with our previously published result from data taken in 1992-1993, we obtain MW=80.43±0.11GeV
Search for dilepton signatures from minimal low-energy supergravity in pp̅ collisions at √s=1.8 TeV
We report on a search for supersymmetry using the D∅ detector. The 1994-1996 data sample of √s=1.8 TeV pp̅ collisions was analyzed for events containing two leptons (e or μ), two or more jets, and missing transverse energy. Assuming the minimal supergravity model, with A0=0 and μ<0, various thresholds were employed to optimize the search. No events were found beyond expectation from the background. We set a lower limit at the 95% C.L. of 255 GeV/c2 for equal mass squarks and gluinos for tanβ=2, and present exclusion contours in the (m0,m½) plane for tanβ=2-6
Search for a new scalar resonance in flavour-changing neutral-current top-quark decays t → qX (q = u, c), with X → bb¯, in proton-proton collisions at √s = 13 TeV with the ATLAS detector
A search for flavour-changing neutral-current decays of a top quark into an up-type quark (either up or charm) and a light scalar particle X decaying into a bottom anti-bottom quark pair is presented. The search focuses on top-quark pair production where one top quark decays to qX, with X → bb¯, and the other top quark decays according to the Standard Model, with the W boson decaying leptonically. The final state is thus characterised by an isolated electron or muon and at least four jets. Events are categorised according to the multiplicity of jets and jets tagged as originating from b-quarks, and a neural network is used to discriminate between signal and background processes. The data analysed correspond to 139 fb⁻¹ of proton–proton collisions at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC. The 95% confidence-level upper limits between 0.019% and 0.062% are derived for the branching fraction B (t → uX) and between 0.018% and 0.078% for the branching fraction B (t → cX), for masses of the scalar particle X between 20 and 160 GeV
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is . We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between and times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity
- …