2,272 research outputs found
Nonlinear Dynamics of Parity-Even Tricritical Gravity in Three and Four Dimensions
Recently proposed "multicritical" higher-derivative gravities in Anti de
Sitter space carry logarithmic representations of the Anti de Sitter isometry
group. While generically non-unitary already at the quadratic, free-theory
level, in special cases these theories admit a unitary subspace. The simplest
example of such behavior is "tricritical" gravity. In this paper, we extend the
study of parity-even tricritical gravity in d = 3, 4 to the first nonlinear
order. We show that the would-be unitary subspace suffers from a linearization
instability and is absent in the full non-linear theory.Comment: 22 pages; v2: references added, published versio
On unitary subsectors of polycritical gravities
We study higher-derivative gravity theories in arbitrary space-time dimension
d with a cosmological constant at their maximally critical points where the
masses of all linearized perturbations vanish. These theories have been
conjectured to be dual to logarithmic conformal field theories in the
(d-1)-dimensional boundary of an AdS solution. We determine the structure of
the linearized perturbations and their boundary fall-off behaviour. The
linearized modes exhibit the expected Jordan block structure and their inner
products are shown to be those of a non-unitary theory. We demonstrate the
existence of consistent unitary truncations of the polycritical gravity theory
at the linearized level for odd rank.Comment: 22 pages. Added references, rephrased introduction slightly.
Published versio
Heavy Flavour Production at Tevatron and Parton Shower Effects
We present hadron-level predictions from the Monte Carlo generator Cascade
and numerical calculations of charm and beauty production at the Fermilab
Tevatron within the framework of the -factorization QCD approach. Our
consideration is based on the CCFM-evolved unintegrated gluon densities in a
proton. The performed analysis covers the total and differential cross sections
of open charm and beauty quarks, and mesons (or rather muons from their
semileptonic decays) and the total and differential cross sections of di-jet hadroproduction. We study the theoretical uncertainties of our
calculations and investigate the effects coming from parton showers in initial
and final states. Our predictions are compared with the recent experimental
data taken by the D0 and CDF collaborations. Special attention is put on the
specific angular correlations between the final-state particles. We demonstrate
that the final state parton shower plays a crucial role in the description of
such observables. The decorrelated part of angular separations can be fully
described, if the process is included.Comment: Fig 8,9 10 replaced, small corrections in text A discussion of the
delta phi results is adde
Warped black holes in 3D general massive gravity
We study regular spacelike warped black holes in the three dimensional
general massive gravity model, which contains both the gravitational
Chern-Simons term and the linear combination of curvature squared terms
characterizing the new massive gravity besides the Einstein-Hilbert term. The
parameters of the metric are found by solving a quartic equation constrained by
an inequality that imposes the absence of closed timelike curves. Explicit
expressions for the central charges are suggested by exploiting the fact that
these black holes are discrete quotients of spacelike warped AdS(3) and a known
formula for the entropy. Previous results obtained separately in topological
massive gravity and in new massive gravity are recovered as special cases.Comment: 38 pages, 7 figures. v2: minor changes, added refs and an appendix on
self-dual and null z-warped black hole
Influence of epithermal muonic molecule formation on kinetics of the CF processes in deuterium
The non-resonant formation of molecules in the loosely bound state in
collisions of non-thermalized atoms with deuterium molecules D has
been considered. The process of such a type is possible only for collision
energies exceeded the ionization potential of D. The calculated rates of
formation in the above-threshold energy region are about one order of
magnitude higher than obtained earlier.
The role of epithermal non-resonant -molecule formation for the kinetics
of CF processes in D gas was studied. It was shown that the
non-resonant formation by atoms accelerated during the cascade
can be directly observed in the neutron time spectra at very short initial
times.Comment: 6 pages, 5 figures, Proceedings of the International Conference on
Exotic Atoms and Related Topics EXA-2011, Vienna, Sep 5-9, 201
Gain control network conditions in early sensory coding
Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity
of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate
models and Hodgkin-Huxley conductance based models
Generation and physiological roles of linear ubiquitin chains
Ubiquitination now ranks with phosphorylation as one of the best-studied post-translational modifications of proteins with broad regulatory roles across all of biology. Ubiquitination usually involves the addition of ubiquitin chains to target protein molecules, and these may be of eight different types, seven of which involve the linkage of one of the seven internal lysine (K) residues in one ubiquitin molecule to the carboxy-terminal diglycine of the next. In the eighth, the so-called linear ubiquitin chains, the linkage is between the amino-terminal amino group of methionine on a ubiquitin that is conjugated with a target protein and the carboxy-terminal carboxy group of the incoming ubiquitin. Physiological roles are well established for K48-linked chains, which are essential for signaling proteasomal degradation of proteins, and for K63-linked chains, which play a part in recruitment of DNA repair enzymes, cell signaling and endocytosis. We focus here on linear ubiquitin chains, how they are assembled, and how three different avenues of research have indicated physiological roles for linear ubiquitination in innate and adaptive immunity and suppression of inflammation
Holography For a De Sitter-Esque Geometry
Warped dS arises as a solution to topologically massive gravity (TMG)
with positive cosmological constant and Chern-Simons coefficient
in the region . It is given by a real line fibration
over two-dimensional de Sitter space and is equivalent to the rotating Nariai
geometry at fixed polar angle. We study the thermodynamic and asymptotic
structure of a family of geometries with warped dS asymptotics.
Interestingly, these solutions have both a cosmological horizon and an internal
one, and their entropy is unbounded from above unlike black holes in regular de
Sitter space. The asymptotic symmetry group resides at future infinity and is
given by a semi-direct product of a Virasoro algebra and a current algebra. The
right moving central charge vanishes when . We discuss the
possible holographic interpretation of these de Sitter-esque spacetimes.Comment: 22 pages, 1 figure; v2: typos corrected, to match with published
versio
- …