7,139 research outputs found
Flow Observations with Tufts and Lampblack of the Stalling of Four Typical Airfoil Sections in the NACA Variable-density Tunnel
A preliminary investigation of the stalling processes of four typical airfoil sections was made over the critical range of the Reynolds Number. Motion pictures were taken of the movements of small silk tufts on the airfoil surface as the angle of attack increased through a range of angles including the stall. The boundary-layer flow also at certain angles of attack was indicated by the patterns formed by a suspension of lampblack in oil brushed onto the airfoil surface. These observations were analyzed together with corresponding force-test measurements to derive a picture of the stalling processes of airfoils
Synchronization in a ring of pulsating oscillators with bidirectional couplings
We study the dynamical behavior of an ensemble of oscillators interacting
through short range bidirectional pulses. The geometry is 1D with periodic
boundary conditions. Our interest is twofold. To explore the conditions
required to reach fully synchronization and to invewstigate the time needed to
get such state. We present both theoretical and numerical results.Comment: Revtex, 4 pages, 2 figures. To appear in Int. J. Bifurc. and Chao
Investigation of a Protein Complex Network
The budding yeast {\it Saccharomyces cerevisiae} is the first eukaryote whose
genome has been completely sequenced. It is also the first eukaryotic cell
whose proteome (the set of all proteins) and interactome (the network of all
mutual interactions between proteins) has been analyzed. In this paper we study
the structure of the yeast protein complex network in which weighted edges
between complexes represent the number of shared proteins. It is found that the
network of protein complexes is a small world network with scale free behavior
for many of its distributions. However we find that there are no strong
correlations between the weights and degrees of neighboring complexes. To
reveal non-random features of the network we also compare it with a null model
in which the complexes randomly select their proteins. Finally we propose a
simple evolutionary model based on duplication and divergence of proteins.Comment: 19 pages, 9 figures, 1 table, to appear in Euro. Phys. J.
Summary of Airfoil Data
The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author
Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach
BACKGROUND: Dormancy associated MADS-box (DAM) genes are candidates for the regulation of growth cessation and terminal bud formation in peach. These genes are not expressed in the peach mutant evergrowing, which fails to cease growth and enter dormancy under dormancy-inducing conditions. We analyzed the phylogenetic relationships among and the rates and patterns of molecular evolution within DAM genes in the phylogenetic context of the MADS-box gene family. RESULTS: The peach DAM genes grouped with the SVP/StMADS11 lineage of type II MIKC(C )MADS-box genes. Phylogenetic analyses suggest that the peach SVP/StMADS11-like gene family, which contains significantly more members than annual model plants, expanded through serial tandem gene duplication. We found evidence of strong purifying selection acting to constrain functional divergence among the peach DAM genes and only a single codon, located in the C-terminal region, under significant positive selection. CONCLUSION: Because all DAM genes are expressed in peach and are subjected to strong purifying selection we suggest that the duplicated genes have been maintained by subfunctionalization and/or neofunctionalization. In addition, this pattern of selection suggests that the DAM genes are important for peach growth and development
Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (\u3cem\u3eCastanea mollissima\u3c/em\u3e) and plant reference genomes
Background Chinese chestnut (Castanea mollissima) has emerged as a model species for the Fagaceae family with extensive genomic resources including a physical map, a dense genetic map and quantitative trait loci (QTLs) for chestnut blight resistance. These resources enable comparative genomics analyses relative to model plants. We assessed the degree of conservation between the chestnut genome and other well annotated and assembled plant genomic sequences, focusing on the QTL regions of most interest to the chestnut breeding community. Results The integrated physical and genetic map of Chinese chestnut has been improved to now include 858 shared sequence-based markers. The utility of the integrated map has also been improved through the addition of 42,970 BAC (bacterial artificial chromosome) end sequences spanning over 26 million bases of the estimated 800 Mb chestnut genome. Synteny between chestnut and ten model plant species was conducted on a macro-syntenic scale using sequences from both individual probes and BAC end sequences across the chestnut physical map. Blocks of synteny with chestnut were found in all ten reference species, with the percent of the chestnut physical map that could be aligned ranging from 10 to 39 %. The integrated genetic and physical map was utilized to identify BACs that spanned the three previously identified QTL regions conferring blight resistance. The clones were pooled and sequenced, yielding 396 sequence scaffolds covering 13.9 Mbp. Comparative genomic analysis on a microsytenic scale, using the QTL-associated genomic sequence, identified synteny from chestnut to other plant genomes ranging from 5.4 to 12.9 % of the genome sequences aligning. Conclusions On both the macro- and micro-synteny levels, the peach, grape and poplar genomes were found to be the most structurally conserved with chestnut. Interestingly, these results did not strictly follow the expectation that decreased phylogenetic distance would correspond to increased levels of genome preservation, but rather suggest the additional influence of life-history traits on preservation of synteny. The regions of synteny that were detected provide an important tool for defining and cataloging genes in the QTL regions for advancing chestnut blight resistance research
A Computational Algebra Approach to the Reverse Engineering of Gene Regulatory Networks
This paper proposes a new method to reverse engineer gene regulatory networks
from experimental data. The modeling framework used is time-discrete
deterministic dynamical systems, with a finite set of states for each of the
variables. The simplest examples of such models are Boolean networks, in which
variables have only two possible states. The use of a larger number of possible
states allows a finer discretization of experimental data and more than one
possible mode of action for the variables, depending on threshold values.
Furthermore, with a suitable choice of state set, one can employ powerful tools
from computational algebra, that underlie the reverse-engineering algorithm,
avoiding costly enumeration strategies. To perform well, the algorithm requires
wildtype together with perturbation time courses. This makes it suitable for
small to meso-scale networks rather than networks on a genome-wide scale. The
complexity of the algorithm is quadratic in the number of variables and cubic
in the number of time points. The algorithm is validated on a recently
published Boolean network model of segment polarity development in Drosophila
melanogaster.Comment: 28 pages, 5 EPS figures, uses elsart.cl
Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes
Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000?km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight route
- …