24 research outputs found

    A New and Elementary CP^n Dyonic Magnon

    Full text link
    We show that the dressing transformation method produces a new type of dyonic CP^n magnon in terms of which all the other known solutions are either composites or arise as special limits. In particular, this includes the embedding of Dorey's dyonic magnon via an RP^3 subspace of CP^n. We also show how to generate Dorey's dyonic magnon directly in the S^n sigma model via the dressing method without resorting to the isomorphism with the SU(2) principle chiral model when n=3. The new dyon is shown to be either a charged dyon or topological kink of the related symmetric-space sine-Gordon theories associated to CP^n and in this sense is a direct generalization of the soliton of the complex sine-Gordon theory.Comment: 21 pages, JHEP3, typos correcte

    Magnons, their Solitonic Avatars and the Pohlmeyer Reduction

    Full text link
    We study the solitons of the symmetric space sine-Gordon theories that arise once the Pohlmeyer reduction has been imposed on a sigma model with the symmetric space as target. Under this map the solitons arise as giant magnons that are relevant to string theory in the context of the AdS/CFT correspondence. In particular, we consider the cases S^n, CP^n and SU(n) in some detail. We clarify the construction of the charges carried by the solitons and also address the possible Lagrangian formulations of the symmetric space sine-Gordon theories. We show that the dressing, or Backlund, transformation naturally produces solitons directly in both the sigma model and the symmetric space sine-Gordon equations without the need to explicitly map from one to the other. In particular, we obtain a new magnon solution in CP^3. We show that the dressing method does not produce the more general "dyonic" solutions which involve non-trivial motion of the collective coordinates carried by the solitons.Comment: 52 page

    On the mass of the compact object in the black hole binary A0620-00

    No full text
    Multicolor orbital light curves of the black hole candidate binary A0620-00 are presented. The light curves exhibit ellipsoidal variations and a grazing eclipse of the mass donor companion star by the accretion disk. Synthetic light curves were generated using realistic mass donor star fluxes and an isothermal blackbody disk. For mass ratios of q = M1/M sub 2 = 5.0, 10.6, and 15.0 systematic searches were executed in parameter space for synthetic light curves that fit the observations. For each mass ratio, acceptable fits were found only for a small range of orbital inclinations. It is argued that the mass ratio is unlikely to exceed q = 10.6, and an upper limit of 0.8 solar masses is placed on the mass of the companion star. These constraints imply 4.16 +/- 0.1 to 5.55 +/- 0.15 solar masses. The lower limit on M1 is more than 4-sigma above the mass of a maximally rotating neutron star, and constitutes further strong evidence in favor of a black hole primary in this system

    Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data

    No full text
    We combine Dark Energy Survey Year 1 clustering and weak lensing data with baryon acoustic oscillations and Big Bang nucleosynthesis experiments to constrain the Hubble constant. Assuming a flat ΛCDM model with minimal neutrino mass (∑mν = 0.06 eV), we find H0=67.4⁺¹.¹₋₁.₂ kms⁻¹ Mpc⁻¹ (68 per cent CL). This result is completely independent of Hubble constant measurements based on the distance ladder, cosmic microwave background anisotropies (both temperature and polarization), and strong lensing constraints. There are now five data sets that: (a) have no shared observational systematics; and (b) each constrains the Hubble constant with fractional uncertainty at the few-per cent level. We compare these five independent estimates, and find that, as a set, the differences between them are significant at the 2.5σ level (χ²/dof = 24/11, probability to  exceed = 1.1 per cent). Having set the threshold for consistency at 3σ, we combine all five data sets to arrive at H0=69.3⁺⁰.⁴₋₀.₆ kms⁻¹ Mpc⁻¹.ISSN:0035-8711ISSN:1365-296

    Models of the strongly lensed quasar DES J0408-5354

    No full text
    We present detailed modelling of the recently discovered, quadruply lensed quasar J0408−5354, with the aim of interpreting its remarkable configuration: besides three quasar images (A,B,D) around the main deflector (G1), a fourth image (C) is significantly reddened and dimmed by a perturber (G2) which is not detected in the Dark Energy Survey imaging data. From lens models incorporating (dust-corrected) flux ratios, we find a perturber Einstein radius 0.04 arcsec ≲ RE, G2 ≲ 0.2 arcsec and enclosed mass Mp(RE, G2) ≲ 1.0 × 10(10) M⊙. The main deflector has stellar mass log10(M⋆/M⊙) = 11.49(+0.46)(−0.32), a projected mass Mp(RE, G1) ≈ 6 × 10(11) M⊙ within its Einstein radius RE, G1 = (1.85 ± 0.15) arcsec and predicted velocity dispersion 267–280 km s(−1). Follow-up images from a companion monitoring campaign show additional components, including a candidate second source at a redshift between the quasar and G1. Models with free perturbers, and dust-corrected and delay-corrected flux ratios, are also explored. The predicted time-delays (ΔtAB = (135.0 ± 12.6) d, ΔtBD = (21.0 ± 3.5) d) roughly agree with those measured, but better imaging is required for proper modelling and comparison. We also discuss some lessons learnt from J0408−5354  on lensed quasar finding strategies, due to its chromaticity and morphology.ISSN:0035-8711ISSN:1365-2966ISSN:1365-871

    Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: Application to DES SV

    No full text
    Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three methods: Kaiser–Squires (KS), Wiener filter, and Glimpse. Kaiser–Squires is a direct inversion, not accounting for survey masks or noise. The Wiener filter is well-motivated for Gaussian density fields in a Bayesian framework. Glimpse uses sparsity, aiming to reconstruct non-linearities in the density field. We compare these methods with several tests using public Dark Energy Survey (DES) Science Verification (SV) data and realistic DES simulations. The Wiener filter and Glimpse offer substantial improvements over smoothed Kaiser–Squires with a range of metrics. Both the Wiener filter and Glimpse convergence reconstructions show a 12 per cent improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods’ abilities to find mass peaks, we measure the difference between peak counts from simulated ΛCDM shear catalogues and catalogues with no mass fluctuations (a standard data vector when inferring cosmology from peak statistics); the maximum signal-to-noise of these peak statistics is increased by a factor of 3.5 for the Wiener filter and 9 for Glimpse. With simulations, we measure the reconstruction of the harmonic phases; the phase residuals’ concentration is improved 17 per cent by Glimpse and 18 per cent by the Wiener filter. The correlationbetween reconstructions from data and foreground redMaPPer clusters is increased 18 per cent by the Wiener filter and 32 per cent by Glimpse.ISSN:0035-8711ISSN:1365-2966ISSN:1365-871
    corecore