262 research outputs found

    Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface

    Get PDF
    Atomic force microscope (AFM) and cyclic voltammetry (CV) are used to probe how ionic surfactant adsorbed layer structure affects redox processes at deep eutectic solvent (DES)/graphite interfaces. Unlike its behaviour in water, sodium dodecyl sulphate (SDS) in DESs only adsorbs as a complete layer of hemicylindrical hemimicelles far above its critical micelle concentration (CMC). Near the CMC it forms a tail-to-tail monolayer at OCP and positive potentials, and which desorbs at negative potentials. In contrast, cetyltrimethylammonium bromide (CTAB) adsorbs as hemimicelles at low concentrations, and remains adsorbed at both positive and negative potentials. The SDS horizontal monolayer has little overall effect on redox processes at the graphite interface, but hemimicelles form an effective and stable barrier. The stronger solvophobic interactions between the C16 versus C12 alkyl chains in the DES allow CTAB to self-assemble into a robust coating at low concentrations, and illustrate how the structure of the DES/electrode interface and electrochemical response can be engineered by controlling surfactant structure

    Nitrofurantoin and fosfomycin for resistant urinary tract infections: old drugs for emerging problems

    Get PDF
    Uncomplicated urinary tract infection is one of the most common indications for antibiotic use in the community. However, the Gram-negative organisms that can cause the infection are becoming more resistant to antibiotics. Many multidrug resistant organisms retain susceptibility to two old antibiotics, nitrofurantoin and fosfomycin. Advantages over newer drugs include their high urinary concentrations and minimal toxicity. Fosfomycin is a potential treatment option for patients with uncomplicated urinary tract infection due to resistant organisms. Nitrofu

    Development and management of systemic lupus erythematosus in an HIV-infected man with hepatitis C and B co-infection following interferon therapy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The association of human immunodeficiency virus and immune dysfunction leading to development of autoimmune markers is well described, but human immunodeficiency virus infection is relatively protective for the development of systemic lupus erythematosus. In contrast, development of systemic lupus erythematosus with hepatitis C and with interferon therapy is well described in a number of case reports. We here describe the first case of systemic lupus erythematosus developing in a man infected with human immunodeficiency virus, hepatitis C and hepatitis B co-infection where the onset seems to have been temporally related to interferon therapy.</p> <p>Case presentation</p> <p>We report the occurrence of systemic lupus erythematosus complicating interferon-α therapy for hepatitis C in a 47-year-old asplenic male with haemophilia co-infected with human immunodeficiency virus and hepatitis B. He presented with a truncal rash, abdominal pains and headache and later developed grade IV lupus nephritis requiring haemodialysis, mycophenolate mofetil and steroid therapy. We were able to successfully withdraw dialysis and mycophenolate while maintaining stable renal function.</p> <p>Conclusion</p> <p>Interferon-α is critical in antiviral immunity against hepatitis C but also acts as a pathogenic mediator for systemic lupus erythematosus, a condition associated with activation of plasmacytoid dendritic cells that are depleted in human immunodeficiency virus infection. The occurrence of auto-antibodies and lupus-like features in the coinfections with hepatitis C require careful assessment. Immunosuppressant therapy for lupus risks exacerbating underlying infections in patients with concurrent human immunodeficiency virus, hepatitis B and C.</p

    A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis

    Get PDF
    To fully understand the performance of tidal stream turbines for the development of ocean renewable energy, a range of computational models is required. We review and compare results from several models of horizontal axis turbines at different spatial scales. Models under review include blade element momentum theory (BEMT), blade element actuator disk, Reynolds averaged Navier Stokes (RANS) CFD (BEM-CFD), blade-resolved moving reference frame and coastal models based on the shallow water equations. To evaluate the BEMT, a comparison is made to experiments with three different rotors. We demonstrate that, apart from the near-field wake, there are similarities in the results between the BEM-CFD approach and a coastal area model using a simplified turbine fence at a headland case

    Soft-Collinear Factorization in Effective Field Theory

    Get PDF
    The factorization of soft and ultrasoft gluons from collinear particles is shown at the level of operators in an effective field theory. Exclusive hadronic factorization and inclusive partonic factorization follow as special cases. The leading order Lagrangian is derived using power counting and gauge invariance in the effective theory. Several species of gluons are required, and softer gluons appear as background fields to gluons with harder momenta. Two examples are given: the factorization of soft gluons in B->D pi, and the soft-collinear convolution for the B->Xs gamma spectrum.Comment: 32 pages, 11 figs, journal versio

    Roadmap for a sustainable circular economy in lithium-ion and future battery technologies

    Get PDF
    The market dynamics, and their impact on a future circular economy for lithium-ion batteries (LIB), are presented in this roadmap, with safety as an integral consideration throughout the life cycle. At the point of end-of-life (EOL), there is a range of potential options—remanufacturing, reuse and recycling. Diagnostics play a significant role in evaluating the state-of-health and condition of batteries, and improvements to diagnostic techniques are evaluated. At present, manual disassembly dominates EOL disposal, however, given the volumes of future batteries that are to be anticipated, automated approaches to the dismantling of EOL battery packs will be key. The first stage in recycling after the removal of the cells is the initial cell-breaking or opening step. Approaches to this are reviewed, contrasting shredding and cell disassembly as two alternative approaches. Design for recycling is one approach that could assist in easier disassembly of cells, and new approaches to cell design that could enable the circular economy of LIBs are reviewed. After disassembly, subsequent separation of the black mass is performed before further concentration of components. There are a plethora of alternative approaches for recovering materials; this roadmap sets out the future directions for a range of approaches including pyrometallurgy, hydrometallurgy, short-loop, direct, and the biological recovery of LIB materials. Furthermore, anode, lithium, electrolyte, binder and plastics recovery are considered in order to maximise the proportion of materials recovered, minimise waste and point the way towards zero-waste recycling. The life-cycle implications of a circular economy are discussed considering the overall system of LIB recycling, and also directly investigating the different recycling methods. The legal and regulatory perspectives are also considered. Finally, with a view to the future, approaches for next-generation battery chemistries and recycling are evaluated, identifying gaps for research. This review takes the form of a series of short reviews, with each section written independently by a diverse international authorship of experts on the topic. Collectively, these reviews form a comprehensive picture of the current state of the art in LIB recycling, and how these technologies are expected to develop in the future

    Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen.

    Get PDF
    Klebsiella pneumoniae is a major cause of opportunistic healthcare-associated infections, which are increasingly complicated by the presence of extended-spectrum beta-lactamases (ESBLs) and carbapenem resistance. We conducted a year-long prospective surveillance study of K. pneumoniae clinical isolates in hospital patients. Whole-genome sequence (WGS) data reveals a diverse pathogen population, including other species within the K. pneumoniae species complex (18%). Several infections were caused by K. variicola/K. pneumoniae hybrids, one of which shows evidence of nosocomial transmission. A wide range of antimicrobial resistance (AMR) phenotypes are observed, and diverse genetic mechanisms identified (mainly plasmid-borne genes). ESBLs are correlated with presence of other acquired AMR genes (median n = 10). Bacterial genomic features associated with nosocomial onset are ESBLs (OR 2.34, p = 0.015) and rhamnose-positive capsules (OR 3.12, p < 0.001). Virulence plasmid-encoded features (aerobactin, hypermucoidy) are observed at low-prevalence (<3%), mostly in community-onset cases. WGS-confirmed nosocomial transmission is implicated in just 10% of cases, but strongly associated with ESBLs (OR 21, p < 1 × 10-11). We estimate 28% risk of onward nosocomial transmission for ESBL-positive strains vs 1.7% for ESBL-negative strains. These data indicate that K. pneumoniae infections in hospitalised patients are due largely to opportunistic infections with diverse strains, with an additional burden from nosocomially-transmitted AMR strains and community-acquired hypervirulent strains
    corecore